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Abstract 
 
Two Scleractinian corals, Agaricia agaricites and Montastraea cavernosa, were 

collected from shallow (20 m depth) and mesophotic (60 m) ecosystems from the 

Cayman Islands. The fatty acid content of these species was analyzed by gas 

chromatography to determine variation in fatty acid profiles between the species and 

within species at different depths (shallow and mesophotic).  Fatty acid composition is 

indicative of an organism’s diet and can be used to determine feeding habits of corals. 

The corals studied had different fatty acid content, suggesting different feeding 

mechanisms. Additionally, a difference in fatty acid content arose as a result of living in 

different environments for M. cavernosa but not A. agaricites, suggesting feeding 

plasticity and supporting species-specific adaptations to new living environments.   

In shallow ecosystems (20 m) A. agaricites contained more polyunsaturated fatty 

acids (PUFAs) than M. cavernosa and M. cavernosa contained more saturated fatty acids 

(SAFAs) than A. agaricites. There was no difference in the fatty acid profiles between 

colonies from mesophotic reefs at 60 m. The difference in FA content between species 

could be a result of species-specific feeding.  

Shallow and mesophotic colonies of A. agaricites have similar fatty acid content 

while deep water colonies of M. cavernosa contain more PUFAs and less SAFAs than 

shallow colonies. This difference in fatty acid content may be a result of a species-

specific response of these two organisms adapting to the different environments.  
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Introduction 

Scleractinian corals are reef-building hard corals; the two Scleractinian corals in 

this study are Montastrea cavernosa, a head coral, and Agaricia agaricites, a plate coral 

(Figure 1). M. cavernosa, commonly known as the great star coral, is one of the most 

common reef-building corals of the Caribbean. It is known for its vibrant array of 

coloration including green, orange, brown, grey and red. While colonies are most 

abundant between 10 and 30 m, this organism has been documented as deep as 110 m 

(Arkive, 2015). A. agaricites, also known as the ‘lettuce coral,’ is another common 

Scleractinian species found from shallow environments to depths of 75 m (Aronson, 

Bruckner, Moore, Precht, & Weil, 2008).  

There are many differences in shallow (1 - 30 m) and mesophotic (30 - 150 m) 

ecosystems. Mesophotic environments are understudied yet vitally important as they are 

thought to be a refuge for shallow water species as shallow water conditions become less 

favorable for coral growth as a result of changing ocean conditions and pollution (Lesser, 

Slattery, & Leichter, 2009). Despite this, numerous abundant shallow water species do 

not colonize mesophotic coral ecosystems (MCEs), showing that deep water does not 

serve as refuge for all coral species (Kahng et al., 2010). Scleractinian corals are 

abundant in MCEs which range from 30 m to 150 m (Rooney et al., 2010). The 

zooxanthellae taxa in mesophotic coral colonies can be different compared to shallow 

ecosystems where light and photosynthetically active radiation (PAR) levels are lower. 

Whether corals in these deeper waters alter their modes of nutrient acquisition from 

translocation of nutrients from their symbiotic zooxanthellae or an increase in 

heterotrophy is still uncertain (Kahng et al., 2010). Individual coral species utilize 
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different feeding strategies and thus no universal pattern of adaptation to depth can be 

identified, as the acclimation to depth is likely to be species-specific. Species-specific 

adaptations have been shown in relation to varying temperatures (Coles & Fadlallah, 

1991), light levels, and food availability (Tremblay, Grover, Maguer, Hoogenboom, & 

Ferrier-Pagès, 2014). Depth, which may affect any of these factors, could also cause a 

species-specific response.  

Corals feed by two mechanisms as corals exhibit polytrophism: that is they can 

attain nutrients via heterotrophy or by translocation of photosynthates by symbiotic 

zooxanthellae living within the coral tissue (Ayukai, 1995). Some coral species are 

shown to depend more on heterotrophy than translocation, this behavior has been 

documented for the corals in our study. A. agaricites is a heterotrophic feeder, while M. 

cavernosa relies more on translocation from symbionts for its nutrients (Crandall, Teece, 

Manfrino, Estes, & Ciesla, 2015). Factors such as light and food availability would cause 

our two corals to react differently as M. cavernosa is more dependent on higher PAR 

levels which are important for photosynthesis and thus translocation. The relative 

importance of heterotrophy and autotrophy is species-specific, with only certain corals 

exhibit heterotrophic plasticity (Anthony & Fabricius, 2000).  

To determine differences in feeding habits between coral species, several methods 

can be used including comparisons of fatty acid profiles. Fatty acids are molecules used 

by cells for a variety of reasons including the construction of lipids, triglycerides, and 

other macromolecules. Generally, fatty acids can be categorized into three broad groups 

based on specific functions. Saturated fatty acids (SAFAs) consist of a fully saturated 

hydrocarbon chain; monounsaturated fatty acids (MUFAs) contain one double bond in 
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the alkyl chain, typically at or before the C9 position for organisms of Animalia; and 

polyunsaturated fatty acids (PUFAs) which have more than two double bonds in the alkyl 

chain (Gurr, Harwood, & Frayn, 2002).  

Only plants and some bacterial organisms are known to synthesize PUFAs, which 

are essential to health, reproduction, and membrane fluidity of higher trophic level 

organisms (Spector, 1999) (Murata & Los, 1997). Typically, organisms of the kingdom 

Animalia must obtain these essential PUFAs through their diet. Corals are interesting 

organisms as they contain symbiotic algae in their tissues which can transfer these 

essential fatty acids (PUFAs) to the coral cells via translocation (Schlichter, 1982). In 

addition to this, corals can also feed heterotrophically to obtain PUFAs (Jakobsen, 1999). 

Symbiotic algae of corals can transfer enough lipids to the host to make up 90% of the 

host organisms lipid content (Muscatine, 1990).  

However when introduced to environmental stressors a shift in feeding habit is 

often observed. Stressors studied include water temperature (Glynn, Perez, & Glichrist, 

1985), food source availability (Imbs , Latyshev, Dautova, & Latypov, 2010), light 

intensity (Harland, Davies, & Fixter, 1992), and zooxanthellate photosynthetic 

productivity (Rodrigues, Grottoli, & Pease, 2008). In the coral Stylophora pistillata, 

photosynthetic rates and translocation of nutrients was observed under varying irradiance 

and food availability. Different percentages of lipids transferred to the coral by 

translocation were observed under the different irradiances and under different food 

availability conditions; 90% translocation was observed in colonies with high irradiance 

and high food availability while 71% translocation was observed in low irradiance and 
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high food availability (Tremblay et al., 2014). This study shows zooxanthellae 

performing differently when exposed to different light levels.  

An extreme example of change in nutrient acquisition of corals in differing 

environments is coral bleaching, where increases in water temperature cause the coral 

tissue to be an ill-suited environment for the algae which then leave the coral tissue and 

the coral must obtain all its nutrients via heterotrophy (Glynn, 1993). As shifts in feeding 

mechanisms have been observed with different stressors, there is no universal cause and 

effect between these factors. It has been proposed that feeding mechanisms may be 

species-specific. Two corals studied Goniastrea retiformis and Porties cylindrica were 

exposed to different light levels and suspended particulate matter (SPM). Under 

controlled conditions the corals reacted differently to the varying light and SPM; G. 

retiformis was able to grow under high SPM while P. cylindrica became energy deficient 

(Houlbreque & Ferrier-Pages, 2009). This study by Houlbreque  & Ferrier-Pages (2009) 

shows a species-specific response.  

Another species-specific trait of corals is the type of symbiont (Symbiodnium) 

associated with each coral. For example, the corals Porcillopora verrucosa and Pavona 

giganteca contained different symbionts over a depth range which had adapted to 

different light regimes suggesting host-specific symbionts (Iglasias-Prieto, Beltran, 

LaJeunesse, Reyes-Bonillas, & Throme, 2004). Additionally, the types of Symbiodinium 

changed with increasing depth in M. cavernosa (Lesser et al., 2010). Variation in 

symbionts within coral tissue may play a major role in translocation and fatty acid 

content within corals.  
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M. cavernosa and A. agaricites are within different taxonomic families, express 

different morphologies (Figure 1), and favor one feeding mechanism over the other 

(translocation favored in M. cavernosa, heterotrophy favored in A. agaricites). It is 

hypothesized that the species will have different fatty acid content between each other 

because of those properties. In addition to this, it is hypothesized that the species will 

behave differently in shallow and mesophotic environments, demonstrating a species-

specific response to environmental conditions that differ from shallow to mesophotic 

ecosystems such as light levels.  

Such behavioral change can be seen in the fatty acid profile of the species and 

may cause the corals to shift feeding habits. It is for that reason that change is expected 

most in the PUFA content as PUFAs are attained in organisms from Animalia strictly 

through their diet. It is possible that the lower light levels in mesophotic environments 

will cause the symbiotic algae to be less productive (Harland et al., 1992) thus corals 

more dependent on nutrient acquisition from translocation would acquire less PUFA. 

However, the coral could obtain those PUFAs via heterotrophy which would result in no 

change in PUFA content or possibly an increase in PUFA depending on food availability 

and feeding rate.  

Methods 

Sample collection 

  Samples of Montastraea cavernosa and Agaricia agaricites were collected from 

the Cayman Islands. Trained technical divers collected coral chips at “Rock Bottom” (19° 

41.67” N, 80° 4.17” W) and “Paul’s Anchors” (19° 42.0” N, 80° 3.42” W) located on the 

north wall near the Little Cayman Research Centre using SCUBA (Figure 1). Individual 
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colonies were sampled from a shallow zone at 18-20 m (M. cavernosa n=5; A. agaricites 

n=4) and from the mesophotic zone at 55-60 m (M. cavernosa n=5; A. agaricites n=4). 

Samples were packed in labeled vials and returned promptly to the laboratory where the 

top 4mm of coral holobiont (animal and symbiont) tissue was scraped from each colony 

and then stored in a freezer. Frozen samples of the holobioint (animal tissue, symbiont, 

and microbial consortia) were ground with a mortar pestle to homogenize samples to a 

powdery consistency. This powder was lyophilized (-70°C, 150 mTorr) for 48 hours to 

remove residual water. 

Fatty acid analysis 

 Total organic matter was extracted from approximately 40 mg of dry, 

homogenized coral tissue. The tissue homogenate included the host animal tissue, the 

symbionts, and associated biomass. Organic matter was extracted using dichloromethane 

(DCM) and methyl alcohol (1:1). 2 mL of the solvent mixture was added to the weighed 

tissue sample in pre-muffled (400°C, 2 hr) test tubes and vortex mixed. The mixed 

sample was sonicated in a water bath for 5 minutes and centrifuged (4g, 2 min) to form a 

solid pellet. The supernatant was removed with new pre-muffled Pasteur pipettes to a 

fresh pre-muffled test tube. The extraction and removal of the supernatant was performed 

2 more times and the solvent extract fractions were combined. The extract was dried at 

50°C under a gentle stream of nitrogen. After drying, tricosanoic acid was added to the 

extract as an internal quantitation standard and dried under a stream of nitrogen at 50°C.  

Total organic extracts were saponified (6 % potassium hydroxide in methanol for 

60 minutes at 70 oC) to isolate fatty acids and subsequently esterified with methanolic 

hydrochloric acid (Sigma, 60 minutes at 60 oC), and free alcohols silylated with 
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bis(trimethylsilyl)-trifluoroacetamide (BSTFA; Sigma; 60 minutes at 60 oC).  Gas 

chromatography (GC) analysis was performed on a Hewlett Packard 5890 using a DB-5 

(J&W Scientific) column (30 m, ID 0.25 mm, film thickness 0.25 mm). The column 

temperature program started at 60 oC for 1 minute, increased to 140 oC at 15 oC min-1, 

and then increased to 300 oC at 4 oC min-1 and remained there for 15 minutes.  The 

split/splitless injector and detector temperatures were both 250 oC, and the column flow 

was 2.6 ml min-1 of helium.  

Fatty acids were identified by comparison with known fatty acids (Sigma-

Aldrich) and by high-resolution mass spectrometry (ThermoFinnigan Trace GC Ultra 

coupled to a high resolution ThermoFinnigan MAT 95 XP MS [GC-MS]) operating in 

electron-impact mode with the column and temperature program described above. Mass 

spectra, equivalent chain length measurements (ECL; Christie 1988) and relative 

retention times were compared with known standards and published spectra. Quantitation 

of fatty acids was determined by the FID chromatogram using the internal standard 

(tricosanoic acid), and are expressed as percentage of total fatty acids. The instrument 

detection limit was 2 ng on the GC column, and the error in measurement for each 

compound was <5%.  

Statistical analysis 

 Fatty acid percentage data were normalized via arcsine transformation (Zar 1984), 

and fatty acid amounts were individually compared between the two species using a 2-

sample T-test. We also tested whether individual species of corals contained higher 

relative abundances of specific fatty acids between shallow and deep colonies using a 
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one-sample t-test. All statistical tests were performed using MiniTab Release 17 software 

and comparisons were considered significant at α = 0.05. 

Results 

Scleractinian coral comparison of FA content between species 

 The average fatty acid profiles of A. agaricites and M. cavernosa were tabulated 

(Table 1). Values for relative abundance of each fatty acid was calculated as percent of 

average total fatty acid content. To calculate average SAFA, MUFA, and PUFA content 

for each species; the average content of the fatty acids C14:0, C16:0, and C18:0 (SAFA); 

C16:1 ω 9, C16:1 ω 7, C18:1 ω 9, and C18:1 ω 7 (MUFA); and  C18:2 ω 6, C20:4 ω 6, 

C20:5 ω 3, C20:3 ω 6 , C22:6 ω 3, C22:4 ω 6, C24:5 ω 6, C24:6 ω 3 (PUFA) were 

combined and normalized to the total FA content of the samples. M. cavernosa and A. 

agaricites contained similar fatty acid compounds including saturated (SAFA), 

monounsaturated (MUFA) and polyunsaturated (PUFA) fatty acids. 

For both species, SAFA was the dominant fatty acid class making up 71-80% 

total FA content in M. cavernosa and 64-72% in A. agaricites (Table 1, Figure 4). The 

dominant fatty acid for both species was C16:0 (55-60% M. cavernosa; 41-57% A. 

agaricites) followed by C18:0 (13-18% M. cavernosa; 11-21% A. agaricites (Table 1, 

Figure 3).  

The ω7 and ω9 monounsaturated C16 and C18 moieties were present in less than 

2.2% in M. cavernosa (with the exception of C18:1ω9 which amounted to as much as 

8%) and 2.6% in A. agaricites (with the exception of the C18:1ω9 which amounted to as 

much as 7.1%). Combined MUFAs accounted for up to 12% of the fatty acid content in 
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both species at all depths. Total PUFAs accounted for up 25% of the total fatty acid 

content in shallow colonies of A. agaricites and were dominated by 22:6ω3 (up to 6.5% 

in M. cavernosa and 6.4% in A. agaricites) (Table 1). 

Shallow colonies of A. agaricites and M. cavernosa varied in SAFA and PUFA 

content (Figure 4a). M. cavernosa had higher SAFA content [t(5)=5.38 (p=0.003)], and 

lower PUFA content [t(5)=4.89 (p=0.005)] than A. agaricites. Additionally, in shallow 

colonies there was no difference in MUFA content between species [t(3)=1.20 (p=0.316)] 

 Mesophotic colonies (60 m) showed no difference in SAFA [t(12)=0.34 

(p=0.738)], PUFA [t(13)=0.25 (p=0.809)], or MUFA [t(10)=0.78 (p=0.454)] (Figure 4b).  

Scleractinian coral response to depth 

The major fatty acid classes (SAFA, MUFA, PUFA) between shallow (20 m) and 

mesophotic (60 m) colonies of A. agaricites were similar (Figure 5b; SAFA: [t(9)=1.54 

(p=0.158)], MUFA[t(5)=0.38 (p=0.722)], PUFA: [t(9)=1.65 (p=0.134)]. 

 In shallow and mesophotic colonies of M. cavernosa, there were differences in 

overall SAFA and PUFA content (Figure 5a). Shallow colonies contained more SAFA: 

[t(11)=2.62 (p=0.024)]; while deep colonies contained more PUFA: [t(12)=0.34 

(p=0.025)]. There was no difference in MUFA content between the two depths 

[t(11)=0.55 (p=0.596)].  

Discussion 

Comparison of scleractinian coral fatty acid content 

We compared the fatty acid content of the Scleractinian corals M. cavernosa and 

A. agaricites. As expected, shallow water colonies of M. cavernosa and A. agaricites 
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have different fatty acid content particularly in the SAFA and PUFA. However, 

mesophotic colonies contained similar fatty acid compositions (Table 1).  

Of the shallow colony data, A. agaricites contain more PUFA than M. cavernosa 

while M. cavernosa colonies contain more SAFA than A. agaricites. This variation in our 

Scleractinian coral FA content complies with the literature where FA content varies 

between species of Scleractinian coral with no correlation to genus or morphology. In a 

study of 11 species of Scleractinian corals of various genera and morphology, no 

correlation of fatty acid content to morphology or genera was observed (Yamashiro, Oku, 

Higa, Chinen, & Sakai, 1999). As organisms occupy various ecosystem niches they adapt 

different characteristics, one being morphology. This is a result of evolution, a well 

known example is how Darwin’s finches took on different beak sizes as they fed on 

different sources and occupied different niches in the Galapagos (Grant, 1999). This is 

the basis of evolution, corals could simply gain different morphologies as a result of 

competition leading to species-specific developments in FA content and morphology.  

In an additional study, the fatty acid content of sixteen Scleractinian species 

belonging to six families varied between families (A. B. Imbs, Demidkova, Latypov, & 

Pham, 2007). As M. cavernosa is a member of the Faviidae family, and A. agaricites is a 

member of the Agariciidae family; these species would likely have different fatty acid 

content based on the Imbs (2007) results which supports possible chemotaxonomic 

abilities to place corals in a phylogenetic tree. In our study, there were only variations 

between the shallow water colonies of A. agaricites and M. cavernosa while the 

mesophotic colonies had comparable fatty acid content. Imbs et al. (2007) only analyzed 

colonies growing in shallow water (2 m) and reported variation between families where 
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conditions for photosynthesis are favorable for the zooxanthellae. In our study, corals of 

two families, M. cavernosa and A. agaricites, collected in shallow waters had varying FA 

content while mesophotic colonies had similar FA content. M. cavernosa is a more 

photosynthate-dependent organism than A. agaricites, which is a substantial 

heterotrophic feeder (Crandall et al., 2015). As M. cavernosa colonizes deeper 

environments where photosynthesis may be reduced as a result of lower PAR levels, it 

may have to adapt to rely more on heterotrophy than shallow colonies which is why a 

change in FA content was observed. For A. agaricites no change in FA content was 

observed as it is already a heavy heterotrophic feeder. 

Individual coral species may have different feeding capabilities. For example, the 

coral Pavona gigantean has a higher feeding rate than Pocillopora damicornis (Palardy, 

Grottoli, & Matthews, 2006), (Palardy, Grottoli, & Matthews, 2005). Because PUFAs are 

brought into the organism through their diet, corals with the ability to feed faster will 

have more PUFA content as they can obtain food at an accelerated rate. It is possible that 

M. cavernosa and A. agaricites simply have different feeding rates, which could be a 

result of their differing morphologies. A. agaricites is a heavier heterotrophic feeder than 

M. cavernosa (Crandall et al., 2015) which could account for the variation in FA content 

of shallow colonies as conditions for photosynthesis enable M. cavernosa to obtain 

nutrients including fatty acids mainly via translocation. The two coral species can feed by 

different mechanisms in shallow environments as there are optimal conditions for 

photosynthesis and heterotrophy, leading to variation in FA content as FA content relies 

on an organism’s diet. In mesophotic environments, however, photosynthesis is inhibited 

thus the coral that relies more on translocation may need to adapt to more heterotrophic 
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feeding which can be inferred by a change in diet between shallow and deep colonies 

leading to a change in the FA content.  

Scleractinian colony depth comparison 

In our study, shallow and mesophotic colonies of M. cavernosa and A. agaricites 

were collected and compared in terms of their fatty acid content to observe differences in 

fatty acid content in different water environments. It was expected that shallow and 

deeper colonies of these corals would have different fatty acid content based on the 

different environmental conditions imposed by increasing depth including temperature 

and photon flux density. We hypothesized that the coral species would behave differently 

in relation to depth. Indeed, shallow and mesophotic colonies of M. cavernosa have 

different fatty acid content while shallow and mesophotic colonies of A. agaricites have 

comparable fatty acid content. This shows that the corals do in fact behave differently in 

shallow and mesophotic environments compared to each other. This could be due to the 

feeding habits of these specific corals, as M. cavernosa is more dependent on its 

photosynthetic zooxanthellae than A. agaricites which relies primarily on heterotrophy 

for nutrients (Crandall et al., 2015). 

As environmental conditions change from shallow to mesophotic ecosystems, 

photosynthesis may be less productive causing a shift in feeding for M. cavernosa. 

Photosynthetic variation and increased heterotrophy with depth was observed for M. 

cavernosa (Lesser et al., 2010). Lesser (2010) showed that temperature change did not 

play a major role in shallow and mesophotic environments, only a 4°C difference was 

observed between shallow and mesophotic (90 m) environments suggesting that light or 

PAR availability was the determining factor for the changes seen in colonies of M. 
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cavernosa in shallow and mesophotic environments as light levels are known to vary 

with depth (Harland et al., 1992).  

Shallow and deep colonies of M. cavernosa had different fatty acid content with 

deep colonies contained more PUFA and less SAFA content than shallow colonies 

(Figure 5a). As mesophotic colonies are exposed to less light, it would be expected that 

photosynthesis would slow and less translocation could take place between the symbionts 

and coral tissue resulting in a decrease in PUFA content as translocation is a main 

method by which some coral species obtain PUFAs. Instead, we observed an increase in 

PUFA content in M. cavernosa mesophotic colonies compared to shallow colonies 

(Figure 5a, Table 1). A possible explanation as to why PUFA content increased with 

increasing depth is an increase in heterotrophic feeding in mesophotic colonies, as shown 

by Lesser et al. (2010): M. cavernosa exhibited a sharp transition from translocation to 

heterotrophy between colonies collected at 45 and 61 m. In some corals, such as 

Pocillopora damicornis, feeding rate is dependent on photosynthate availability; that is, 

as the symbionts are unable to photosynthesize or photosynthetic rates decrease, 

heterotrophy will increase (Clayton Jr. & Lasker, 1982). This switch in feeding 

mechanism has been shown to be species-specific as some species of coral are more 

dependent on photosynthetic nutrients while others are mainly heterotrophs even in 

shallow environments (Crandall et al., 2015).  

Zooxanthellae are present in deeper colonies as zooxanthellae within the coral 

tissues are able to undergo photo-acclimation to persist in environments of changing light 

(Titlyanov, Titlyanova, Yamazato, & van Woesik, 2001). The coral Stylophora pistillata 

can survive between 95% and 0.8% PAR0 with 30% to 8% PAR0 as the optimum light 
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harvesting region for the zooxanthellae (Titlyanov et al., 2001). Changes in chlorophyll 

and zooxanthellae population densities in coral branches were tested at different light 

levels to show productivity. It is possible that M. cavernosa was not outside it’s optimal 

PAR range as well because the coral did not appear to be ‘stressed;’ PUFA content of the 

coral actually increased. Because PAR values were not recorded during our sample 

collection, there is no way to determine if this was the case. Comparison to other studies 

on the depth effects on M. cavernosa reveal that the coral is able to photoacclimate up to 

91 m, with an apparent shift to heterotrophic feeding from 45 to 61 m (Lesser et al., 

2010). The increased PUFA content in M. cavernosa with increasing depth within our 

study may be a result of increased heterotrophy given proper food availability.  

Another experiment explored the effect of different light and food availability on 

the coral Turbinaria reniformis.. Lowest SAFA and PUFA production was observed in 

starved and low light colonies, whereas the highest PUFA production was in colonies 

grown under low light and fed conditions (Treignier, Grover, & Ferrier-Pages, 2008). The 

later results revealing highest PUFA production at low light agrees with our study as light 

is substantially lower in mesophotic environments compared to shallow environments. It 

is possible that an abundance of food was available for M. cavernosa to take in, resulting 

in an increase in PUFA despite the possible decreased potential to obtain these nutrients 

from translocation. However, for the Scleractinian coral Stylophora pistillata, there was 

no difference in capture rates between highly fed and slightly fed coral colonies (Ferrier-

Pagés, Witting, Tambutté, & Sebens, 2003). It is possible that shallow and deep colonies 

of M. cavernosa had similar feeding opportunities, but the deep colonies fed more than 

the shallow colonies. Recent data has shown a link between photosynthesis and 
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heterotrophy. Translocation within the coral Stylophora pistillata was studied under 

varying levels of irradiance and food availability. The greatest amount of nutrients 

transferred to the coral via translocation was recorded to be 90% under high irradiance 

when fed while the lowest nutrient acquisition via translocation was 71% under low 

irradiance when fed (Tremblay et al., 2014). This brings back the dependence of coral 

heterotrophy on photosynthate availability where feeding rates have been shown to 

increase when photosynthetic activity decreases (Clayton Jr. & Lasker, 1982). While M. 

cavernosa may have had similar feeding opportunities in shallow and mesophotic 

environments, the lower light conditions in the mesophotic environment may have caused 

a decrease in photosynthetic activity and thus a decrease in nutrient transferred to the 

coral through translocation. This decrease in photosynthate availability would have 

caused the coral to increase heterotrophy, which would otherwise not have occurred if 

optimal light-levels were present for the zooxanthellae as shown in shallow colonies. 

This accounts for the variation in fatty acid content of M. cavernosa in shallow and 

mesophotic environments.  

M. cavernosa is dependent on photosynthate nutrients while A. agaricites relies 

more on heterotrophy for nutrient acquisition (Crandall et al., 2015). This could explain 

why the fatty acid content in shallow and mesophotic colonies of M. cavernosa changed 

while that of A. agaricites did not. It was suggested that the decreased availability of 

photosynthate nutrients caused mesophotic colonies of M. cavernosa to increase 

heterotrophy compared to shallow colonies, which rely on zooxanthellae for nutrients. If 

A. agaricites does not rely heavily on photosynthate nutrients for survival, then there 

should be no change in fatty acid content when light levels change as A. agaricites is 
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naturally a substantial heterotrophic feeder. The difference between the corals A. 

agaricites and M. cavernosa supports the possibility that coral feeding habits are species-

specific. For example, the feeding habits of individual colonies of the Scleractinian corals 

Orbicella (Montastraea) faveolata and Porites astreoides cannot be correlated to a 

specific factor (Teece, Estes, Gelsleichter, & Lirman, 2011). Teece et al. (2011) observed 

colonies under multiple conditions including turbidity, sedimentation, and nutrient levels. 

The different stressors caused the corals to have different fatty acid content but it was 

found that the coral feeding habits were variable in relation to the different conditions and 

thus there was no universal pattern of the coral feeding habit in relation to the specific 

stressors. The corals Porites compressa and Montipora capitata reacted differently when 

introduced to coral bleaching environments in terms of their lipid classes (Rodrigues et 

al., 2008), reinforcing species-specific reaction to stress of new environments. In addition 

to these stressors, the effect of suspended particulate matter (SPM) as a stressor or 

method of nutrient acquisition by corals has also been studied. Increased SPM in reef 

waters can affects light levels available to corals as the more turbid the water (high SPM) 

the less light the corals can get as the photons can not penetrate through the suspended 

particulate matter. A study observed the feeding abilities of Goniastrea retiformis and 

Porites cylindrica under increased SPM – decreased light and food potential within the 

SPM. Under high SPM content, G. retiformis increased feeding rates and tissue mass 

while P. cylindrica did not increase feeding and showed a loss of tissue (Anthony & 

Fabricius, 2000). The authors proposed that P. cylindrica had reached its ‘feeding 

saturation’ and, in an environment where particle saturation was above that of the corals 

feeding saturation, a stress response was triggered and the coral lost energy. Studies such 
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as Anthony & Fabricius (2000) conclude that SPM is a source of food to an extent, as for 

G. retiformis, but when levels of SPM are too high it acts as a stressor to the coral, as for 

P. cylindrica. They showed that certain SPM concentration did not negatively affect the 

coral G. retiformis but did negatively affect the coral P. cylindrica, suggesting that SPM 

could also be a species-specific stressor. 

In conclusion, there are a variety of environmental factors that corals must adapt 

to when living in shallow and mesophotic environments including light levels and food 

availability. The corals observed in our study, M. cavernosa and A. agaricites 

demonstrate individuality in response to depth, M. cavernosa colonies changing its fatty 

acid profile in the SAFA and PUFA while A. agaricites fatty acid profile remained 

comparable between shallow and mesophotic colonies. Because of the numerous 

possibilities as to why the fatty acid content was variable in shallow and mesophotic 

colonies of M. cavernosa, there is no definitive answer as to why this variation occurred. 

Some possibilities as to why fatty acid content varied with M. cavernosa include feeding 

saturation (Anthony & Fabricius, 2000), light levels (Titlyanov et al., 2001), and the new 

dependence of heterotrophy over translocation in mesophotic ecosystems compared to 

shallow waters (Clayton Jr. & Lasker, 1982). In contrast, the fatty acid content of A. 

agaricites did not vary with depth. These differences in the potential nutrient and fatty 

acid acquisition strategies in these coral species highlight the species-specific differences. 

M. cavernosa seemingly needed to increase heterotrophy to survive in mesophotic 

environments where light levels were low and photosynthates were not as easily obtained 

as in shallow colonies. This assumption was based on the changing FA content of M. 

cavernosa species growing in shallow and mesophotic environments. In contrast, the FA 
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content within A. agaricites shallow and mesophotic colonies did not change. This result 

along with literature review could mean that A. agaricites did not need to undergo 

changes in methods of nutrient acquisition to acclimate to the different environmental 

conditions imposed by increasing depth.  
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Figure 1. Photographs of  the Scleractinian 
corals Agaricia agaricites  (a) (Veron, 
2013a) and Montastraea cavernosa (b) 
(Veron, 2013b) 
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Figure 2. Sampling sight for M. cavernosa and A. agaricites. Little Cayman Island, 
Cayman Islands.  
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Table 1: Fatty acid content of shallow and deep colonies of Scleractinian coral. Values are calculated 
percent total fatty acid from each species. In addition, relative abundance of saturated fatty acid (SAFA) 
including C14:0, C16:0, and C18:0; monounsaturated fatty acid (MUFA) including C16:1 ω 9, C16:1 ω 
7, C18:1 ω 9, and C18:1 ω 7; and polyunsaturated fatty acid (PUFA) including  C18:2 ω 6, C20:4 ω 6, 
C20:5 ω 3, C20:3 ω 6 , C22:6 ω 3, C22:4 ω 6, C24:5 ω 6, C24:6 ω 3 are shown below.   
  M. cavernosa M. cavernosa A. agaricites A. agaricites 
  n=5 n=9 n=4 n=8 
  Shallow Deep Shallow Deep 
FA mean std error mean std error mean std error mean std error 
C14:0 2.9 % 0.2% 2.6% 0.1% 2.0% 0.4% 3.1% 0.3% 
C16:0 60% 2.2% 55% 3.1% 41% 2.8% 57% 4.7% 

C16:1ω9 0.1% 0.0% 0.3% 0.0% 0.3% 0.2% 0.6% 0.2% 

C16:1ω7 2.2% 0.3% 2.6% 0.2% 2.6% 0.6% 4.9% 0.5% 

C18:0 18% 1.1% 13% 0.4% 21% 0.8% 11% 0.6% 

C18:2ω6 1.4% 0.1% 2.3% 0.3% 2.1% 0.4% 2.1% 0.5% 

C18:1ω9 8.0% 0.2% 7.4% 0.4% 5.9% 1.2% 3.2% 0.3% 

C18:1ω7 1.7% 0.5% 1.5% 0.1% 1.8% 0.2% 2.4% 0.2% 

C20:4ω6 2.0% 0.5% 3.9% 0.9% 7.1% 0.8% 3.5% 1.1% 

C20:5ω3 0.9% 0.3% 1.9% 0.4% 1.9% 0.7% 1.7% 0.6% 

C20:3ω6 0.3% 0.03% 0.9% 0.2% 0.6% 0.2% 1.0% 0.2% 

C22:6ω3 1.3% 0.2% 6.5% 1.7% 6.4% 2.0% 4.8% 1.9% 

C22:4ω6 1.2% 0.4% 1.8% 0.4% 5.1% 0.9% 2.1% 0.9% 

C24:5ω6 0.2% 0.05% 0.2% 0.04% 1.4% 0.2% 0.8% 0.2% 

C24:6ω3 0.3% 0.04% 0.2% 0.03% 0.4% 0.1% 0.6% 0.1% 

SAFA 80% 1.5% 71% 3.4% 64% 2.6% 72% 4.8% 

MUFA 12% 0.3% 12% 0.5% 11% 1.3% 11% 0.8% 

PUFA 7.6% 1.4% 18% 3.5% 25% 3.6% 17% 4.6% 
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Figure 3: Relative abundance of fatty acid in shallow (white bar) and 
mesophotic (black bar) colonies of M. cavernosa (a) and A. agaricites 
(b).  
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Figure 4. Relative abundance of SAFA, MUFA, and 
PUFA for M. cavernosa and A. agaricites of shallow 
(a) and mesophotic (b) environments. Significant 
differences observed between shallow colonies of A. 
agaricites and M. cavernosa in SAFA content 
[t(11)=2.62 (p=0.024)] M. cavernosa containing more 
SAFA than A. agaricites; and PUFA content 
[t(5)=4.89 (p=0.005)] M. cavernosa containing less 
PUFA than A. agaricites. MUFA content was similar 
in all colonies at all depths.   
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Figure 5: Relative abundance of SAFA, MUFA, and 
PUFA percent total fatty acid in shallow (white bar) and 
deep (black bar) colonies of M. cavernosa (a) and A. 
agaricites (b).  
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