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Abstract 
The unequal distribution of legal protections on endangered species has been attributed to the 

“charisma” and “cuteness” of protected species. However, the theory of kin selection, which predicts the 

genetic relationship between organisms is proportional to the amount of cooperation between them, 

offers an evolutionary explanation for this phenomenon.      

 In this thesis, it was hypothesized if the unequal distribution of legal protections on endangered 

species is a result of kin selection, then the genetic similarity between a species and Homo sapiens is 

proportional to the legal protections on that species. This hypothesis was tested by analyzing the 

taxonomic classifications of species protected in the Convention on International Trade in Endangered 

Species of Wild Fauna and Flora (CITES). The results of this analysis support the hypothesis, for organisms 

with greater genetic similarity to Homo sapiens (i.e. Animalia, Chordata, Mammalia, Primates, and 

Hominidae species) were afforded more legal protections in CITES than organisms with less genetic 

similarity to Homo sapiens.           

 These results indicate CITES is not an ecocentric law that recognizes the intrinsic worth of non-

Homo sapiens, but an anthropocentric law that recognizes the genetic worth non-Homo sapiens have in 

increasing the indirect fitness of Homo sapiens. Also, these results suggest kin selection can operate 

between species as opposed to just within species, which indicates the existence of interspecies kin 

selection. Finally, the existence of interspecies kin selection suggests kin selection could play a role in 

interspecies cooperation. 
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Advice to Future Honors Students 
The ability to give advice implies the advisor has something the advisee does not, so perhaps you 

assume I have years of experience under my belt. In truth, I do not. You likely have more experience than 

I do, so I will not try to impart impractical advice from the lofty pedestal of “graduating senior”. Instead, I 

will impart practical advice (minus the pedestal) of why you need to complete an Honors Thesis and how 

to survive the “dark days” of your Honors Thesis.      

 Thinking about graduate school? Given that you’re an “Honors Student”, the thought of 

continuing your education has likely crossed your mind, and there is no better litmus test for graduate 

school than an Honors Thesis. Therefore, if you want to go to graduate school, you need to complete an 

Honors Thesis. If you want to devote years of your life to research, you need some experience conducting 

independent research to ascertain whether research is something you excel at and most importantly, 

whether research is something you enjoy. I have found research to be an incredibly enjoyable experience, 

for unlike the rest of the undergraduate experience, you are completely free to develop your own original 

ideas—no matter how weird they are. However, research is not for the faint of heart, so perhaps the best 

reason to complete an Honors Thesis is that an Honors Thesis the best litmus test for graduate school 

because of the “dark days”.          

 Something may go wrong. Conversely, nothing may go wrong, but you may feel overwhelmed by 

the data. At times, when analyzing 36,617 pieces of data, I felt “buried” in my data—too entangled in the 

minutiae to see the big picture. At times I doubted my methods and doubted my conclusions. When you 

are in these “dark days” try to remember why you first started conducting your research and remember 

your reaction when you first received the results that strongly supported your hypothesis. Remembering 

what made you love the research in the first place will help you through the “dark days”.   

  However, these “dark days” are not all bad, for the “dark days” can help you build a stronger, 

more cogent paper. Since I doubted my methods and conclusions, I wrote my methods and discussion 
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with the goal of convincing myself that my methods and conclusions were valid. In the end, this resulted 

in more cogent argument that thoroughly addressed any apparent obstacles to the validity of my 

hypothesis. My advice is to not let the “dark days” derail your research, but to allow the “dark days” to 

let you to become your biggest critic to help ensure the strength of your argument.  

 Also, experiencing the “dark days” on a small scale in an Honors Thesis will help you determine 

whether you have the fortitude to overcome the “dark days”, and thus will help prepare you for the “dark 

days” in graduate school that will likely be on a larger scale. I have heard repeatedly from professors that 

completing a research paper like an Honors Thesis is very important for success in graduate school. For 

example, one professor was very happy to hear I had completed an Honors Thesis, for he knew of students 

who had not had research experience in their undergraduate career and who had failed to complete their 

dissertations because the experience was too overwhelming and too unfamiliar. By completing an Honors 

Thesis you are preparing yourself to be successful in graduate school and you are making yourself a more 

competitive candidate who has a better chance of getting into your dream school and getting the coveted 

full funding.            

 In short, you need to complete an Honors Thesis, and yes, it is a good deal of work, so be prepared 

to spend countless nights writing your Honors Thesis. However, you are an “Honors Student” and if you 

were incapable of completing an Honors Thesis, you would not be an “Honors Student”, so do not let the 

work scare you. Also, you will get through the “dark days”—just remember what made you love your topic 

in the first place and do not be afraid to ask for help.  Finally, enjoy your journey and may you come out 

with original ideas.  
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One touch of nature makes the whole world kin 

        William Shakespeare  

Introduction 

Kindchenschema 

Wildlife legal regimes are rife with perplexing inequalities, for some endangered species are 

protected with highly restrictive legal protections, while others are legally unprotected (Hewitt, 2012). 

This unequal distribution of legal protections on endangered species has been attributed to the superficial 

values of “charisma” and “cuteness” (Yaussy, 2012). The role of “cuteness” in species conservation has 

been explained as a byproduct of Kindchenschema: morphological stimuli that trigger the adaptive 

behavior of caring for human infants (Lorenz, 1943). Kindchenschema includes features such as a large 

head, big eyes, and round cheeks, and the degree of Kindchenschema has been shown to influence the 

amount of parental affection towards an infant (Langlois, Ritter, Casey, & and Sawin, 1995) and even our 

perception of “cuteness” in non-Homo sapiens (Little, 2012). As a result, it was hypothesized that just as 

the “big eyes, round heads, and short snouts” (Yaussy, 2012) of human infants serve as the proximate 

cause for a caretaking response, the “big eyes, round heads, and short snouts” of “cute” endangered 

species likewise serve as a proximate cause for a caretaking response (Golle, Lisibach, Mast, & Lobmaier, 

2013).            

 However, Kindchenschema only explains a proximate cause of endangered species conservation, 

and neglects the ultimate function—the evolutionary explanation—of endangered species conservation 

by neglecting the genetic basis of these shared “cute” characteristics. “Cute” species are described as 

“cute” because they have similar phenotypes to Homo sapiens, and similar phenotypes generally indicate 

similar genotypes (Futuyma, 2013). If similar genotypes play a role in species conservation, then species 

conservation is more than a byproduct of protecting offspring with certain phenotypes, but a result of the 
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fitness benefit conferred by aiding organisms with similar genotypes (Alcock, 2012). The importance of 

similar genotypes in species conservation indicates that a possible evolutionary explanation for the 

unequal distribution of legal protections on endangered species is the theory of kin selection.   

Kin Selection 

Inclusive Fitness Theory 

 The theory of kin selection fits into the larger context of inclusive fitness theory, which states 

natural selection favors organisms with the greatest inclusive fitness: the combination of an organism’s 

direct fitness and indirect fitness (Alcock, 2012). Fitness describes an organism’s genetic contribution to 

future generations, and direct fitness describes an organism’s genetic contribution through its offspring 

and indirect fitness describes an organism’s genetic contribution through its relatives. Kin selection is the 

mechanism of indirect fitness and describes the evolutionary value—the ultimate function—of behavior. 

Finally, kin selection predicts the genetic relationship between organisms is proportional to the amount 

of cooperation between them.         

 Mathematically, kin selection can be expressed by rB>C (Hamilton’s rule), where when organism 

one aids organism two r represents the shared genetic material between the two organisms, B represents 

the reproductive benefit1 organism two receives from the aid, and C represents the reproductive cost that 

organism one incurs from the aid (Birch & Okasha, 2015). For example, when organism one helps organism 

two reproduce, organism one uses resources that could have aided its direct reproduction and thus incurs 

a direct fitness cost. However, if organism one is related to organism two, organism one incurs an indirect 

fitness benefit when organism two receives a direct fitness benefit. Organism two shares organism one’s 

genetic material (with r representing how much genetic material is shared between them), therefore 

when organism two’s genetic contribution to future generations increases, organism one’s genetic 

                                                           
1 The reproductive benefit and cost described by Hamilton’s rule are expressed as the increase or decrease in an 
organism’s genetic contribution to future generations (Alcock, 2012).  
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contribution to future generations also increases. Put simply, kin selection states it is adaptive for an 

organism to help its relatives reproduce because relatives share genetic material, and thus helping a 

relative reproduce increases an organism’s genetic contribution to future generations.    

 Without the concepts of inclusive fitness and kin selection, helping another organism reproduce 

at the expense of one’s own reproduction may seem like an altruistic2 behavior, however kin selection 

reveals the selfishness behind such seemingly altruistic behaviors (Alcock, 2012). Helping a relative 

(especially a close relative) reproduce is in an organism’s best interest when the direct fitness cost of the 

behavior is less than the indirect fitness benefit of the behavior. Thus, even the apparently altruistic sterile 

worker bees are not “altruists” functioning for the “good of the species”, but self-interested organisms3 

who help extremely close relatives reproduce for the good of their own individual genes (Alcock, 2012, p. 

25). The workers bees’ reproductive “sacrifice” is no real sacrifice under inclusive fitness theory, for their 

“sacrifice” is an adaptive behavior that increases their fitness. Kin selection reveals the selfishness behind 

acts of “altruism” and is rife with explanatory power, an explanatory power that has been limited to 

intraspecies interactions.  

Interspecies Kin Selection       

While limiting the explanatory power of kin selection to intraspecies interactions is 

understandable4, it is not entirely warranted. Many assert “the principle of kin selection cannot operate 

                                                           
2Altruism will be defined as an action that increases the fitness of the receiver and decreases the fitness of the 

giver.  

3 The term “self-interested organisms” does not describe the motivations of the organism performing the 

behavior. Likewise, altruism is not defined by the “selfless” motivations of the “altruist”, but defined by the 

“selfless” outcomes of the altruist’s behavior. Thus, an adaptive behavior cannot be altruistic, for the outcomes of 

all adaptive behaviors are “selfish”.  

4 Limiting kin selection’s explanatory power to intraspecies interactions is understandable because of the issues of 
observability and heritability. Kin selection is most readily observable between very close relatives, where we 
expect to see large direct fitness costs incurred (such as in the case of sterile worker bees), for the sake of large 
indirect fitness benefits (Alcock, 2012, p. 25). Thus, when the proportionality of kin selection is more subtle, we 
have more difficulty finding evidence of kin selection, but absence of evidence for interspecies kin selection is not 
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across species, ‘natural selection cannot possibly produce any modification in a species exclusively for the 

good of another species’ (The Origin of Species, chapter 6)” (Futuyma, 2013, p. 305). If a species 

“produce[d] any modification…exclusively for the good of another species” and neglected its own 

reproduction in favor of another species’ reproduction, it would inevitably meet with extinction. Such a 

species would be an evolutionary dead end, and as Darwin correctly asserted, would be an impossibility 

under natural selection. However, Darwin’s correct assertion bears no connection to Futuyma’s narrow 

construction of kin selection, despite being invoked as evidence for this construction, and Futuyma’s 

statement communicates a distorted interpretation of kin selection.     

 Kin selection is simply a form of individual selection, for it still has the same essential nexus to an 

individual’s genes as traditional individual selection (Shields, 2015). Kin selection is as relentlessly self-

interested as individual selection, and kin selection “cannot possibly produce any modification in a species 

exclusively for the good of another” individual—regardless of the relatedness between the individuals 

(Darwin, 1859). Kin selection is about what is best for the individual, not the individual’s kin, and any 

benefit the individual’s kin receives is simply a byproduct of what is best for the individual (Alcock, 2012). 

Thus, interspecies kin selection would not result “in a species [operating] exclusively for the good of 

another species” (Darwin, 1859), but would result in a species aiding related species for its own benefit. 

Interspecies kin selection would be about what is best for the individuals in species A and any benefit 

species B received from species A would simply be a byproduct of what is best for the individuals in species 

A (Coyne, 2009, pp. 120-121).          

 The labeling of “species A” and “species B” may seem like a choice of convenience, however these 

                                                           
evidence of interspecies kin selection’s absence. Also, there is the issue of heritability, for if organism one and 
organism two are in different species, then when organism one helps organism two reproduce, the behavior 
cannot increase the frequency of organism one’s alleles in organism one’s species (barring any reciprocal altruism). 
However, by aiding organism two reproduce, organism one increases the frequency of alleles that it shares with 
organism two in organism two’s species, thus organism one’s genetic contribution to future generations (fitness) 
still increases.  
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labels are significant for A and B are adjacent alphabetically. Thus, interspecies kin selection might be 

observable between species A and species B, and even between species A and species C, however that 

interspecies kin selection would likely not be observable in species A and species Z. What this puerile 

example is meant to highlight is the essence of kin selection—proportionality. Hamilton’s rule indicates 

there is a proportionality between the amount of aid and cooperation between individuals and their 

genetic similarity (Alcock, 2012). For example, the proportionality of kin selection has been humorously 

illustrated by evolutionary biologist Haldane, who stated “Would I lay down my life to save my brother? 

No, but I would to save two brothers or eight cousins.” (John B. S. Haldane Quotes) Haldane would not 

sacrifice his life for his brother because the sacrifice would not be proportional to the genetic similarity 

between Haldane and his brother, for his brother genetically only represents half of Haldane. Conversely, 

Haldane would “sacrifice” his life for his two brothers or eight cousins because the sacrifice would be 

proportional to the genetic similarity between the two groups, for either group would genetically 

represent a complete Haldane.         

 Similar to Haldane’s example, when a mother sacrifices her life for her child, we observe the 

proportionality of kin selection, for the high degree of cooperation between a mother and her child is 

proportional to the high degree of genetic relatedness between them (Alcock, 2012). If the degree of 

genetic relatedness is lower, then we would then expect the degree of cooperation to be lower as well. 

For example, we would observe the proportionality of kin selection when first cousins aid each other with 

monetary gifts. The genetic similarity between first cousins is generally only 12.5% (one-fourth of the 

genetic similarity between a mother and her child) (Alcock, 2012), and thus we would expect the aid 

between first cousins to be significantly less than the aid between a mother and child.    

 Dealing with even less related individuals (such as fourth or fifth cousins) we would expect any 

aid and cooperation between them to be significantly less than the aid between first cousins, siblings, and 

parents and children. Kin selection can even be extended beyond extended families, for even an apparent 
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“altruist” who donates money to homeless shelters or who works in soup kitchens is exhibiting the 

proportionality of kin selection. The “altruist” is still aiding related individuals (members of her own 

species), and the aid is roughly proportional to the genetic similarity between the “altruist” and other 

Homo sapiens. For example, the “altruist” probably donates less money to charity then she gives to her 

children, and probably spends less time cooking soup at a shelter than she does for her family.   

 The previous examples have described the proportionality of kin selection within the one species, 

however the proportionality of kin selection can extend beyond intraspecies interactions. For example, if 

we return to our “altruist” we might find that she protests animal testing, especially on chimpanzees and 

other great apes, and since great apes and Homo sapiens belong to the family Hominidae, this behavior 

can be explained through kin selection. Great apes are closely related to Homo sapiens, and thus we would 

expect the amount of aid Homo sapiens provide to great apes to be proportional to the genetic similarity 

between Homo sapiens and great apes. For example, Homo sapiens might donate money to great ape 

charities, but we would expect that aid to be less than the aid Homo sapiens provide to other Homo 

sapiens. We might likewise observe the proportionality of kin selection when Homo sapiens aid other 

primates, other mammals, other chordates, and even other animals, and we would expect as the genetic 

similarity between an organism and Homo sapiens decreased that the amount of aid would likewise 

decrease.           

 Kin selection is a simple statement of proportionality that need not be confined to intraspecies 

interactions, for all life is kin. The genetic code is universal and phylogenies elucidate genetic relationships 

between different species, such that we understand which species are more closely related and which are 

more distantly related (Futuyma, 2013). Kinship extends beyond the confines of a single species, thus kin 

selection can extend beyond the confines of a single species. If all life is kin, then interspecies kin selection 

is theoretically possible.   
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General Hypothesis and Predictions 

 Returning to endangered species conservation, if the unequal distribution of legal protections on 

endangered species is a result of kin selection, then the genetic similarity between a species and Homo 

sapiens is proportional to the legal protections on that species. Based on this general prediction5, it is 

predicted the legal protections a species is given is associated with the species’ taxonomic classification. 

It is also predicted within the most restrictive level of legal protections that the numbers of species6 within 

the taxonomic groups Animalia, Chordata, Mammalia, Primates, and Hominidae7 will be greater than the 

numbers of species within less related taxonomic groups within the same taxonomic level. For example, 

it is predicted, the most restrictive level of legal protections will protect more Animalia species than 

Plantae species. It is also predicted, the most restrictive level of legal protections will protect more 

Chordata species than species in other phyla in Animalia; will protect more Mammalia species than species 

in other classes in Chordata; and will protect more Primates than species in other orders in Mammalia. 

 It is also predicted the most restrictive level of legal protections will protect more Animalia species 

than the number of Animalia species expected if the number of Animalia species within the most 

restrictive level was proportional to the total number Animalia species in the law and the total number of 

species protected within the most restrictive level. Likewise, it is predicted the most restrictive level of 

legal protections will protect more Chordata, more Mammalia, and more Primate species than the 

numbers of Chordata, Mammalia, and Primate species expected if the numbers of these species in the 

                                                           
5 These predictions assume the hypothetical law provides different levels of legal protections to endangered 
species.  
6 CITES lists both species and subspecies and lists multiple subspecies as separate entities. For example, the 
subspecies Equus hemionus hemionus and Equus hemionus khur are listed separately in Appendix I of CITES. 
Therefore, when the term “species” is used in this thesis, both species and subspecies are being referred to, and 
the number of species in a taxonomic group is the sum of species and subspecies within that taxonomic group. 
7 It was assumed throughout this thesis Homo sapiens are more genetically similar to species in the same 
taxonomic classifications as Homo sapiens. Therefore, it was assumed Homo sapiens are more genetically similar to 
species in the family Hominidae, in the order Primates, in the class Mammalia, in the phylum Chordata, and in the 
kingdom Animalia.   
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most restrictive level were proportional to the total numbers of these species in the law and the total 

number of species protected within the most restrictive level. Finally, it is predicted all Hominidae species 

(excluding Homo sapiens) will be protected in the most restrictive level of legal protections. To test this 

hypothesis and these predictions the Convention on International Trade in Endangered Species of Wild 

Fauna and Flora (CITES) was analyzed to ascertain whether the genetic similarity between a species and 

Homo sapiens was proportional to the legal protections on that species.     

CITES  

The Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) was 

created in 1973 to conserve endangered and threatened species by regulating trade8 in these species 

(Favre, 1989). CITES is considered one of the few “truly global” treaties (Heijnsbergen, 1997, pp. 27-28), 

for currently 180 countries are party to the treaty (Member Countries, 2013). These parties are required 

to implement CITES at the domestic level by appointing a management authority (who issues trade 

permits) and a scientific authority (who advises the management authority) (Favre, 1989). Parties to the 

treaty are also encouraged to pass domestic legislation to enforce CITES, however domestic enforcement 

legislation is often inadequate.          

 CITES functions as a de facto wildlife conservation law, for while it explicitly regulates 

international wildlife trade, its primary concern is the continued survival of endangered and threatened 

species, and the treaty has indeed helped conserve many species (Favre, 1989). CITES explicitly regulates 

trade and implicitly protects species by listing species in either Appendix I, Appendix II, or Appendix III 

(Heijnsbergen, 1997). Appendix I lists species that are endangered and is a ban on primarily commercial 

trade in these species (Favre, 1989). Appendix II lists species that are threatened and restricts but still 

allows international trade in these threatened species. Appendix III is unlike Appendix I or II, for its trade 

                                                           
8 Trade is defined in CITES as transporting a specimen across international borders, regardless of the purpose of 
that movement (Heijnsbergen, 1997). 
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restrictions vary depending on where the species is located. In short, CITES uses a tiered structure of legal 

protections were species listed on Appendix I are protected with the most restrictive legal protections 

and those listed in Appendix III are protected with the least restrictive legal protections. The three 

appendices are the heart of CITES, and the tiered structure of the treaty can only be fully understood by 

dissecting the subtle differences between these three appendices.  

Appendix I 

Listing Criteria 
Appendix I of CITES protects species “deserving of the highest degree of protection”—endangered 

species (Favre, 1989, p. 57). For a species to be listed in Appendix I it must be in serious danger of 

extinction, which is defined as meeting at least one of the following three criteria: “the size of the wild 

population is small, the area of distribution is restricted, or there is a…marked decline in the population 

size in the wild” (50 CFR §23.89). Parties to the treaty are instructed to consider factors such as species 

and habitat fragmentation; habitat quality and quantity; species vulnerability due to its behavior (e.g. 

migration), life history, ecosystem function, or population structure; decreases in reproductive potential; 

or threats from exploitation, invasive species, and pollution when deciding whether a species meets one 

of the three biological criteria for Appendix I (Favre, 1989).       

 The listing criteria for Appendix I are purposely broad so the “imperfect knowledge” and 

uncertainty which characterizes conservation does not prevent a critically endangered species from being 

protected (Cox, 2007). However, having such broad criteria means the listing process is influenced by 

more than just biological data. What is considered a “small” population size or a restricted area of 

distribution is so dependent on an organism’s life history and behavior, that it is difficult, if not impossible 

given the “imperfect knowledge” of conservation to develop reliable biological standards for all species 

(Favre, 1989). Therefore, biological data alone does not dictate when a population is “small” enough and 

restricted enough to be listed in Appendix I, and thus the door is opened for other factors to influence 
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which species are listed in Appendix I. That is not to say species listed on Appendix I are not endangered, 

but to say there are lurking variables in the listing processes such as economic value and genetic value.   

Trade Procedures 
The permit system for Appendix I is designed to eliminate trade that would be “detrimental to the 

survival of the species”, and thus contains a number of steps designed to combat everything from 

corruption, misinformation, or simply mere oversight (Favre, 1989, p. 63). For an Appendix I species to be 

traded internationally, the shipper must obtain an export permit from the exporting country. The 

management authority of the exporting country (on the advice of the scientific authority) issues an export 

permit only when all of the following four conditions for export are met. First, it must be shown the 

exportation of the specimens will not be detrimental to the survival of the species in the wild (this is called 

a “non-detrimental finding”). The wording of the first condition favors the species, for it places the burden 

of proof on showing that the exportation will not be detrimental, as opposed to showing that the 

exportation will be detrimental to the species’ survival. The first condition permits trade only when there 

is certainty the trade will be not detrimental to the species, and thus if the species’ survival status is 

unknown then no potentially detrimental trade will occur.        

 The second condition for exportation is a determination that the specimens were obtained legally 

in the exporting country (Favre, 1989). The management authority of the exporting country makes the 

determination that a specimen was obtained illegally using a burden of proof less restrictive than the 

“beyond a reasonable doubt” standard used in criminal proceedings, such that a determination of 

illegality can be made on a “preponderance of the evidence”. CITES also allows parties to enact more 

restrictive domestic wildlife legislation, so in many countries Appendix I species cannot be obtained legally 

(Heijnsbergen, 1997). The third condition for exportation is that the specimen must be shipped humanely, 

so specimens who leave the exporting country alive enter the importing country alive (Favre, 1989).   

 The final condition for exportation is an import permit (Favre, 1989). An import permit is only 
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required for Appendix I species, and helps ensure trade in Appendix I species occurs “only in exceptional 

circumstances” (How CITES Works, 2012). The import permit is an extra safeguard designed to ensure the 

survival of the species, and is only granted when the importing country independently makes a non-

detrimental finding by evaluating the three following criteria (Favre, 1989). First, the specimen can only 

be imported for purposes that are not “primarily commercial purposes” with commercial being defined 

as an activity designed to “bring economic benefit” (Conf. 5.10 [Rev. CoP15]). Parties are instructed to 

define commercial “broadly [in order] to provide maximum protection for Appendix I species”, and an 

importer must show the non-commercial aspects of importation are the primary purposes of the 

importation (Conf. 5.10 [Rev. CoP15]). Second, the management authority of the importing country must 

independently make a non-detrimental finding (Favre, 1989). Finally, if a live specimen is being imported, 

then the scientific authority must determine if the recipient of the specimen can properly care for the 

specimen. For example, in the United States an applicant must provide a resume describing the technical 

expertise of the specimen’s caretakers and must provide a description of the facility where the specimen 

will be housed. The applicant must also provide the morality rates (from the past two years) of members 

of the same genus or family as the specimen in the facility where the specimen will be housed, and must 

provide a description of the cause of death of the organisms and measures taken to prevent their deaths. 

Such requirements are meant to ensure the wellbeing of the specimen in the importing country.   

 The importing country’s independent non-detrimental finding acts as a check on oversight, 

misinformation, and corruption in the exporting country (Favre, 1989). While it is possible for the 

exporting country to incorrectly make a non-detrimental finding based on oversight or obsolete biological 

data, it is unlikely for both the exporting country and the importing country to incorrectly make a non-

detrimental finding. Thus, the requirement for an import permit helps ensure a non-detrimental finding 

is made correctly using the best biological data available. The requirement of an import permit also acts 

as a check on corruption. While it is possible for the government of the exporting country to be corrupt 
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and allow trade of an Appendix I species without a non-detrimental finding, it is unlikely the governments 

of the exporting country and the importing country will be corrupt enough to allow trade of an Appendix 

I species without a non-detrimental finding. Thus, the import permit helps ensure trade in Appendix I 

species only occurs when an accurate non-detrimental finding has been made.    

 Additionally, import permits are only granted after the importer has shown they cannot obtain 

the Appendix I species from a captive breeding program; they cannot use a species not listed on Appendix 

I for the same purposes;  and their purpose cannot be achieved by any alternative means (Favre, 1989). 

In essence, an importer must show removing the Appendix I species, an action presumed to be 

detrimental to the species’ survival, is a necessity for a non-commercial purpose. Finally, only a relatively 

small number of import permits are requested for Appendix I species, and therefore import permits can 

be reviewed on case by case bases by the management authorities of the importing countries. This case 

by case review acts a final safeguard against detrimental trade, for the extra scrutiny an import permit 

receives helps ensure trade in Appendix I species only occurs in compliance with the restrictive 

requirements of CITES.           

 The framework of CITES provides Appendix I species with highly restrictive legal protections that 

ensure trade in these endangered species is only allowed “in exceptional circumstances” (How CITES 

Works, 2012), and has been correctly characterized as almost a total ban on trade (Favre, 1989). Due to 

the restrictiveness of Appendix I, listing a species in Appendix I has far reaching economic and political 

implications. The economic implications are clear, for Appendix I is a ban on primarily commercial trade 

and these economic implications can create political turmoil. Species listed in CITES are often located in 

developing nations who would benefit from trading these rare species, thus listing a species in Appendix 

I can cause economic and political turmoil in these nations and can deepen the “Global North” and “Global 

South” divide (Smith, 2013). Add these political and economic hurdles to imperfect biological data, and it 

is clear listing a species in Appendix I is influenced by more than just objective biological facts.    
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Appendix II 

Appendix II is very similar to Appendix I, however a few key distinctions make the legal protections 

provided in Appendix II far weaker than those in Appendix I (Favre, 1989). Appendix II does not concern 

endangered species, but threatened species that may become endangered if international trade in the 

species is not regulated. Therefore, for a species to be listed in Appendix II it either must be likely that 

without international trade regulations the species will be listed in Appendix I, or must be likely that 

current levels of international trade in the species are unsustainable. For example, a species would be 

listed in Appendix II if international trade significantly reduced the species’ population size and thus made 

it vulnerable to other threats.          

 Appendix II, unlike Appendix I, is primarily concerned with sustainable economic utilization of 

threatened species, and therefore seeks to maintain primarily commercial trade in threatened species 

(Favre, 1989). The objective of Appendix II is to prevent species from becoming so endangered that they 

are listed in Appendix I, for this would stop all primarily commercial trade in the species. As a result, 

Appendix II is only concerned with a species’ survival status in order to maintain trade in the species, and 

thus monitors trade to ensure it is at sustainable levels9. Appendix II’s allowance of primarily commercial 

trade reveals it is primarily concerned with the economic utility of threatened species, unlike Appendix I 

which is primarily concerned their survival.         

 While the trade procedures in Appendix II are similar to the procedures in Appendix I, there are 

two differences that transform the nature of the legal protections provided by each appendix (Favre, 

1989). Appendix II requires shippers obtain an export permit from the exporting country, which is issued 

when the management makes a non-detrimental finding, determines the specimens were obtained legally 

in the exporting country, and determines the specimens will be shipped humanely. The second and third 

                                                           
9 The Conference of Parties has helped ensure sustainable trade in Appendix II species by establishing export 
quotas, which set the maximum number of individuals that can be exported without having a detrimental effect on 
the species’ survival ("The CITES Export Quotas", 2015). 
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conditions of the export permit are identical to the second and third conditions of Appendix I. Conversely, 

the first condition, while identical in wording to the first condition in Appendix I, is implemented in a 

significantly different way.           

 In Appendix I, the non-detrimental finding places the burden of proof on showing the exportation 

will not have detrimental effects, while in Appendix II, the non-detrimental finding places the burden of 

proof on showing the exportation will have detrimental effects (Favre, 1989). Shifting the burden of proof 

for the non-detrimental finding in Appendix II results in a stark contrast, for while the burden of proof in 

Appendix I results in export permits only being granted in “exceptional circumstances” (How CITES Works, 

2012), the burden of proof in Appendix II results in export permits only being denied in “exceptional 

case[s]” (Favre, 1989).Where the burden of proof is placed changes the very nature of the legal 

protections these appendices provide, for the burden of proof Appendix I favors the species and the 

burden of proof in Appendix II favors trade.         

 A final difference between trade procedures in Appendix I and Appendix II is the import permit, 

for unlike trade in Appendix I species, trade in Appendix II species does not require an import permit 

(Favre, 1989). The import permit provides species with substantial and restrictive legal protections and is 

used to ensure the accuracy of the non-detrimental finding, thus without this extra layer of protection, 

Appendix II species are made vulnerable to loopholes10. Requiring an import permit for trade in Appendix 

I species is a statement of worth, for it is a statement that Appendix I species are worth the extra time 

and money issuing an import permit costs. Likewise, when an import permit is not required, it is also a 

statement of worth, for it is a statement that Appendix II species are not worth the extra time and money 

issuing an import permit costs. It is a statement that trade of Appendix II species is so valuable it cannot 

hindered by the import permit process.         

                                                           
10 An example of such a loophole was the problem of retrospective issuance of export permits (that was later 
addressed in Conf. 6.6 [Rev. CoP13]), where trade in Appendix II species was occurring without an export permit 
(Favre, 1989). 
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 While Appendix II species are protected with international legal protections in CITES, the legal 

protections protecting Appendix I species are much more restrictive (Favre, 1989). Appendix I’s ban on 

primarily commercial trade, burden of proof that favors species conservation, and the requirement for an 

import permit contrasts sharply with Appendix II’s allowance of primarily commercial trade, burden of 

proof that favors trade, and the lack of a requirement for an import permit. Appendix I can be 

characterized as an international conservation law, which only allows trade in “exceptional 

circumstances” (How CITES Works, 2012), while Appendix II can be characterized as an environmentally 

conscious international trade law, which only prohibits trade in “exceptional case[s]” (Favre, 1989). 

Appendix I provides species with restrictive legal protections necessary for conservation, while Appendix 

II provides species with far weaker legal protections necessary for a hybrid framework primarily concerned 

with trade and partly concerned with conservation.       

Appendix III 

Appendix III is fundamentally different from Appendix I and Appendix II, for it provides 

inconsistent legal protections (Favre, 1989). For example, the Gorilla (Gorilla gorilla) is listed in Appendix 

I and lives in multiple countries throughout Africa (Gorilla, 2015). If these countries are all parties to CITES, 

then the Gorilla is given the same legal protections in CITES regardless of whether it is in Angola or 

Cameroon (both parties to the treaty). However, if a species is listed in Appendix III by only party A but 

resides in party A and party B, then it has legal protections in CITES only in party A but not in party B 

(Favre, 1989).            

 In environmental policy there is often a desire for a congruency of scales, a desire to regulate a 

problem at the level that is occurring (Smith, 2013). For example, when regulating a “common pool 

resource” such as wildlife (which does not respect the borders of the statist system), the desire is to 

regulate this international issue at the international scale (Armstrong, Farrell, & Lambert, 2012). 

Conversely, domestic regulations aimed at an international environmental issue (without the support of 
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international law) are often thought to be somewhat ineffective (Smith, 2013), for how effective can 

wildlife conservation laws be when the species is being overexploited just across the border? As a result, 

Appendix III provides species with the least restrictive legal protections because the legal protections it 

provides are inconsistent, meaning Appendix III species are still vulnerable to overexploitation (Favre, 

1989).               

 Since Appendix III provides the weakest legal protections of the three appendices, its listing 

procedure is far more flexible than Appendix I and Appendix II (Favre, 1989). For a species to be listed in 

Appendix I or II, 120 parties must approve its listing (Member Countries, 2013), while one party may list a 

species in Appendix III (Favre, 1989). Also, for a species to be listed in Appendix I or II, it has to meet 

certain (although very broad) biological criteria, while for a species to be listed in Appendix III it does not 

have to meet any international standards for being threatened or endangered. For a species to be listed 

in Appendix III there must be domestic legislation in the listing party that regulates the species11, and 

international trade regulations must be necessary for the domestic legislation to be effective. Appendix 

III is designed to aid parties domestically regulating a species by providing some international legal 

protections, so international trade in a species does not thwart a party’s efforts at conserving the species. 

 The procedure for trading an Appendix III species varies depending on its country of origin (Favre, 

1989). If an Appendix III species originates in a listing party, then an export permit is required from the 

management authority of the listing party. The management authority only has to determine whether the 

specimens were obtained legally in the listing party and whether the specimens will be shipped humanely 

before granting an export permit. Unlike Appendix I and Appendix II, Appendix III does not require a non-

detrimental finding, so a management authority could grant an export permit even if the exportation 

threatened the species’ survival.         

 Conversely, if the species originates in a non-listing party, then the management authority of that 

                                                           
11 A party can only list a species in Appendix III if the species lives within the jurisdiction of the listing party.  
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party issues a certificate of origin, which shows the specimens originated in a non-listing party (Favre, 

1989). However, the management authority may have difficulty determining where specimens originated, 

and this creates a loophole for illegal trade. For example, a specimen living in a listing party may be 

smuggled into a non-listing party and may “legally” enter international trade under CITES without first 

being subjected to the domestic regulations of the listing party. Finally, if specimens are imported into a 

party that recognizes the specimens as protected then an import permit is required. However, if the party 

does not recognize the specimen as protected then only a certificate of origin or export permit is needed. 

Thus, Appendix III provides inconsistent legal protections and the wellbeing of an Appendix III species 

relies solely on the strength of domestic legislation in listing parties and not on CITES.  

Summary 

In short, Appendix I places the most restrictive legal protections on species and functions as an 

international wildlife conservation law (Favre, 1989). Conversely, Appendix II places less restrictive and 

therefore weaker legal protections on species and functions as an environmentally conscious 

international trade law. Finally, Appendix III places inconsistent and therefore very weak legal protections 

on species and functions as a semi-international trade law. While all three appendices of CITES seek to 

protect wildlife, they are so different in their purposes they almost are three separate laws.  

Hypothesis and Predictions Applied to CITES 

 If the unequal distribution of legal protections in CITES is a result of kin selection, then the genetic 

similarity between a species and Homo sapiens is proportional to the restrictiveness of the legal 

protections CITES places on the species. Thus, it is predicted the appendix a species is listed in is associated 

with the species’ taxonomic classification. Since Appendix I places the most restrictive legal protections 

on species (Favre, 1989), it is predicted Appendix I will list more Animalia species than Plantae species. It 

is also predicted Appendix I will list significantly more Chordata species than species in other phyla in 
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Animalia; will list significantly more Mammalia species than species in other classes in Chordata; and will 

list more Primates than species in other orders in Mammalia.      

 It is also predicted Appendix I will list significantly more Animalia species than the number of 

Animalia species expected if the number of Animalia species in Appendix I was proportional to the total 

number Animalia species in CITES and the total number of species listed in Appendix I. Likewise, it is 

predicted Appendix I will list significantly more Chordata, more Mammalia, and more Primate species than 

the expected number of Chordata, Mammalia, and Primate species if the numbers of Chordata, 

Mammalia, and Primate species in Appendix I were proportional to the total numbers of Chordata, 

Mammalia, and Primate species in CITES and the total number of species listed in Appendix I. Finally, it is 

predicted the entire family of Hominidae (excluding Homo sapiens) will be listed in Appendix I. Also, given 

the high percentage of genetic material Hominidae and Primate species share with Homo sapiens, it is 

predicted all Hominidae and Primate species will be listed in CITES and will not be listed in Appendix III of 

CITES. 
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Methods 

The hypothesis that the unequal distribution of legal protections on endangered species is a result 

of kin selection was tested by comparing the number of species in different taxonomic groups within one 

taxonomical level (e.g. the kingdom, phylum, class, order, or family level) within the three appendices of 

CITES. Thus, the complete taxonomy of each species and the correct number of species and subspecies 

within each taxonomic group listed in the three appendices of CITES was needed to assess the validity of 

the hypothesis.        

Why CITES?  

CITES was selected for this thesis because it met two basic requirements. First, in order to test the 

predictions relating to the legal protections on Animalia, Chordata, Mammalia, Primates, and Hominidae 

species, the law or treaty needed to protect all of these species. Second, the law or treaty needed to 

contain more than one level of legal protections. CITES met both requirements, for its listed Animalia, 

Chordata, Mammalia, Primates, and Hominidae species, and contained three different levels of legal 

protections.             

 If CITES only contained one level of legal protections, then the validity of the hypothesis could 

only be assessed by comparing the number of species in one taxonomic group closely related to Homo 

sapiens to the numbers of species in other taxonomic groups not closely related to Homo sapiens. 

However, relying solely on the numbers of species in taxonomic groups is a flawed method. Different 

taxonomic groups have very different number of species within them (Futuyma, 2013), and thus it would 

be difficult to assess the validity of the hypothesis. For example, a law with only one level of legal 

protections listed every species in order A, containing 25,000 species, and every species in order B, 

containing 600 species. Now, if order A was more genetically similar to Homo sapiens than order B, could 

the validity of the hypothesis be assessed? Is the number of species listed in the law reflective of kin 
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selection or simply reflective of the number of species with the order? Such a question would be nearly 

impossible to answer.          

 Conversely, the current method does not solely rely on the number of species within a taxonomic 

group, but relies primarily on the legal protections provided to a taxonomic group and then takes into 

account the number of species within the taxonomic group. The hypothesis addresses the level of legal 

protections provided to endangered species, however CITES only has three levels of legal protections, and 

thus many different species are listed within each level. Therefore, it would be impossible to assess the 

validity of the hypothesis by only analyzing the level of the legal protections a taxonomic group was 

provided. Thus, to assess the validity of the hypothesis the composition of each appendix of CITES was 

analyzed by calculating the numbers of species within each taxonomic group. The composition of each 

appendix was then used to assess the validity of the hypothesis, such that if the most restrictive level of 

legal protections, Appendix I, was comprised mostly of species with a high degree of genetic similarity to 

Homo sapiens, then the hypothesis would be supported.  

Materials 

To analyze the taxonomy of each species listed in CITES, the three appendices of CITES were 

downloaded separately as CSV files from http://checklist.cites.org/. However, this resource did not 

provide the correct number of species12 within each taxonomic group in CITES13 (despite being produced 

by the United Nations Environmental Program—World Conservation Monitoring Center), thus to analyze 

the number of species within each taxonomic group listed in CITES, other resources had to be utilized. The 

                                                           
12 As discussed earlier, CITES lists both species and subspecies and therefore, the number of species in a taxonomic 
group refers to the sum of species and subspecies within that taxonomic group. 
13 Given the inherent difficulty in comparing organisms as different as plants and primates, every effort was taken 
to compare like with like, which for the purposes of this thesis was chosen to be the number of species and 
subspecies. The CSV files produced by the UNEP listed not only each protected species, but also listed protected 
subspecies, genera, families, and orders, meaning the number of species and subspecies within each protected 
genus, family, and order was not listed in these CSV files. Therefore, the number of species and subspecies in each 
protected genus, family, and order needed to be ascertained, so accurate numbers of species and subspecies in 
different taxonomic classifications could be compared.  

http://checklist.cites.org/
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World Registry of Marine Species (http://www.marinespecies.org/), Mammal Species of the World, 

addition CITES produced resources at (http://www.cites.org/eng/disc/species.php), and a number of 

primary research papers (listed in Appendix B) were used to ascertain how many species were in each 

listed genus, family, and order. Every effort was made to compile accurate numbers of species14, however 

given debates surrounding certain taxonomic classifications, and given the size of the appendices it is 

possible the numbers of species in this thesis are not be completely accurate. However, every listed genus, 

family, and order was researched to ascertain the correct number of species within these taxonomic 

levels.  

Methodology  

Each appendix of CITES was downloaded as a separate CSV file and then was organized into 

different Excel sheets based on taxonomy. The Appendix I CSV file generated five Excel sheets which listed 

all species in Appendix I, all Animalia species in Appendix I, all Chordata species in Appendix I, all 

Mammalia species in Appendix I, and all Primates in Appendix I. The same procedure was repeated for 

Appendix II and Appendix III, however in Appendix III a sheet listing only Primates was not created. Finally, 

a complete list of all species in the three appendices was created by combining the lists of all species in 

each appendix.            

 The analysis of the numbers of species within taxonomic groups in CITES was restricted to 

taxonomic groups relevant to the validity of the hypothesis. The taxonomic groups most relevant to the 

hypothesis were Animalia, Chordata, Mammalia, Primates, and Hominidae. However, to ascertain the 

                                                           
14 The goal of the thesis was to test the hypothesis that the unequal distribution of legal protections on 
endangered species is a result of kin selection, not to make CITES taxonomically accurate. As a result, if CITES listed 
a species under a name that is no longer used by taxonomists and the name change would not affect the results of 
the thesis, the name was not corrected. For example, the family names of many Cnidaria species listed in Appendix 
II are no longer used and have been replaced with other family names, however these names were not corrected 
since the family a Cnidaria species belonged to would not impact the results of this thesis. Also, changing the 
names might lead to more confusion, especially if not done for every listed species in CITES.    

http://www.marinespecies.org/
http://www.cites.org/eng/disc/species.php
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legal protections provided to these groups, the numbers of Animalia, Chordata, Mammalia, Primates, and 

Hominidae species were compared with the numbers of species within less related taxonomic groups 

within the same taxonomic level. Therefore, to ascertain the legal protections provided to Animalia 

species, within each appendix of CITES, the number of Animalia species was compared to the number of 

Plantae species. Thus, the analysis at the taxonomic level of the kingdom encompassed every species in 

CITES.             

 Conversely, the analysis of each subsequent taxonomic level was nested within the taxonomic 

group most related to Homo sapiens within the previous taxonomic level. Therefore, the analysis at the 

taxonomic level of the phylum was restricted to Animalia species, and thus to ascertain the legal 

protections provided to Chordata species, the number of Chordata species was compared to the number 

of species within other phyla in Animalia. Likewise, the analysis at the taxonomic level of the class was 

restricted to Chordata species, thus the number of Mammalia species was compared to the number of 

species in other classes in Chordata. Additionally, the analysis at the taxonomic level of the order was 

restricted to Mammalia species, thus the number of Primates was compared to the number of species in 

other orders in Mammalia. Finally, the analysis at the taxonomic level of the family was restricted to 

Primates, the number of Hominidae species was compared to the number of species in other families in 

Primates.            

 In this thesis, the analysis of the number of species in CITES was restricted to comparisons where 

the genetic similarity between Homo sapiens and taxonomic groups could be judged by taxonomy. For 

example, the numbers of species within different classes of the phylum Cnidaria were not analyzed 

because a Cnidaria species’ class does not indicate a Cnidaria species’ genetic similarity to Homo sapiens. 

Conversely, the numbers of species within different classes of Chordata were analyzed because a 

Chordata species’ class does indicate a Chordata species’ genetic similarity to Homo sapiens. The goal of 

this thesis was to assess the validity of the hypothesis, not to catalog the complete taxonomy of every 
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species listed in CITES, therefore the analysis of CITES was restricted to comparisons relevant to the 

hypothesis.            

 To evaluate the validity of the hypothesis, the composition of Appendix I, Appendix II, and 

Appendix III in CITES was analyzed using a chi square test for independence, homogeneity of proportions, 

and goodness of fit. The level of significance of all chi square tests performed in this thesis was α=0.00115. 

A chi square test for independence was performed to assess whether the legal protections a species was 

given (i.e. which the appendix the species was listed in) was associated with the species’ taxonomic 

classification. A chi square test for homogeneity of proportions was performed to assess whether the 

number of species in a taxonomic group deviated from the number of species expected in that taxonomic 

group if the number of species in that taxonomic group was proportional to the total number of species 

in that taxonomic group in CITES and the total number of species listed in that appendix. A chi square 

goodness of fit test was performed to assess whether the numbers of species within the taxonomic groups 

Animalia, Chordata, Mammalia, Primates, and Hominidae were equal to the numbers of species not within 

these taxonomic groups but within the same taxonomic level within one appendix of CITES. Also, if greater 

than 20% of the expected values in either the chi square homogeneity of proportions test or the chi square 

goodness of fit test were less than five (a violation of one of the assumption of chi square tests), categories 

(taxonomic groups) were combined based on phylogenetic relationships, such that closely related groups 

were placed in the same category.         

 Finally, the diversity of each kingdom, phylum, and class in CITES was assessed by calculating the 

number of orders within these taxonomic groups. Where the values were large enough, a chi square 

homogeneity of proportions test was performed to assess whether the numbers of orders within each 

kingdom, phylum, and class in CITES deviated significantly from the expected numbers of orders (if the 

                                                           
15 Assessing the validity of a hypothesis based on the number of species is difficult, for different taxonomic groups 
have very different number of species within them, so to correct for these flaws a very low α value for significance 
was chosen (α=.001).   
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number of orders within these taxonomic groups was proportional to the total number of orders in these 

taxonomic groups in CITES and the total number of orders listed in that appendix.) Likewise, (where the 

values were large enough) a chi square goodness of fit test was performed to assess whether the numbers 

of orders within each kingdom, phylum, and class in CITES were equal.      

 The number of orders were calculated in order to assess whether one or a few orders 

compromised the majority of species listed in a kingdom, phylum, or class. This assessment was made by 

comparing the number of species in a taxonomic group to the number of orders within that taxonomic 

group. For example, within one taxonomic level, if the majority of species belonged to one taxonomic 

group, and yet the majority of orders belonged to another taxonomic group, this would indicate one or 

few orders compromised the majority of species listed within that taxonomic level. No predictions were 

made regarding the hypothesis and the number of orders within each taxonomic group because of the 

difficulty of assessing whether the diversity of a taxonomic group represented in CITES had any bearing 

on the legal protections provided to that taxonomic group.  

Summary 

To assess the validity of the hypothesis that the unequal distribution of legal protections on 

endangered species is a result of kin selection, the numbers of species in different taxonomic groups 

within one taxonomical level within Appendix I, Appendix II, and Appendix III of CITES were calculated. 

The numbers of species in CITES were then analyzed using chi square tests for independence, 

homogeneity of proportions, and goodness of fit, in order to assess whether the genetic similarity 

between a species and Homo sapiens is proportional to the legal protections on that species.  
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Results 

All Three Appendices of CITES Combined  

Over 80% of the species listed in the three appendices of CITES were Plantae species, while less 

than 20% were Animalia species (Figure 1). The majority of Animalia species were Chordata species and 

approximately one-third of Animalia species were Cnidaria species (Figure 2). Amongst Chordata species, 

more Aves species were listed than Mammalia species (Figure 3), and the majority of Mammalia species 

were Primates (Figure 4).            

 The appendix a species was listed in and the species’ taxonomic classification—a species’ kingdom 

χ2 (1, N=36617)=2926.34, p<0.0001; Table 1, an Animalia species’ phylum χ2 (5, N=6262)=993.59, 

p<0.0001; Table 1, a Chordata species’ class χ2 (6, N=3966)=2193.42, p<0.0001;Table 1, and a Mammalia 

species’ order χ2 (17, N=1195)=328.89, p<0.0001; Table 1—were associated.   

Appendix I 

Kingdom  

Over two-thirds of the species listed in Appendix I were Animalia species (Figure 5), thus each 

kingdom was not represented equally in Appendix I χ2 (1, N=1157)=156.11, p<0.0001; Appendix A:Table 

2 and Table 3. Additionally, in the chi square homogeneity of proportions test, the actual number of 

Animalia species in Appendix I exceeded the expected number of Animalia species by almost 600 species, 

thus the numbers of Animalia and Plantae species in Appendix I were not proportional χ2 (1, 

N=1157)=2144.86, p<0.0001; Appendix A:Table 4 and Table 5.       

 Eighty percent of the orders in Appendix I were in the kingdom Animalia (Figure 6), thus each 

kingdom in Appendix I was not equally diverse χ2 (1, N=65)=23.40, p<0.0001; Appendix A: Table 6 and 

Table 7. However, the number of orders in Animalia and Plantae in Appendix I did not deviate significantly 
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from the expected numbers in the chi square homogeneity of proportions test χ2 (1, N=65)=1.73, p>0.001; 

Appendix A: Table 8 and Table 9 

Phylum  

More than 90% of the Animalia species listed in Appendix I were Chordata species (Figure 7), thus 

each phylum was not represented equally in Appendix I χ2 (5, N=791)=1207.60, p<0.0001; Appendix 

A:Table 10 and Table 11. Additionally, in the chi square homogeneity of proportions test, the actual 

number of Chordata species in Appendix I exceeded the expected number of Chordata species by over 

200 species, thus the number of species in Annelida, Arthropoda, Chordata, Cnidaria, Echinodermata, and 

Mollusca in Appendix I were not proportional χ2 (2, N=791)=447.14, p<0.0001; Appendix A: Table 12 and 

Table 13.             

 Almost 95% of the Animalia orders in Appendix I were in the phylum Chordata (Figure 8), thus 

each phylum in Appendix I was not equally diverse χ2 (2, N=52)=86.81, p<0.0001; Appendix A: Table 14 

and Table 15. The expected values were too low to perform a chi square homogeneity of proportions test.  

Class  

More than half of the Chordata species in Appendix I were Mammalia species (Figure 9), thus each 

class was not represented equally in Appendix I χ2 (6, N=732)=1340.55, p<0.0001; Appendix A:Table 16 

and Table 17 Additionally, in the chi square homogeneity of proportions test, the actual number of 

Mammalia species in Appendix I exceeded the expected number of Mammalia species by over 200 

species, thus the number of species in Actinopterygii, Amphibia, Aves, Elasmobranchii, Mammalia, 

Reptilia, and Sarcopterygii in Appendix I were not proportional χ2 (4, N=732)=268.43, p<0.0001; Appendix 

A; Table 18 and Table 19 .          

 Over 40% of the orders in Chordata in Appendix I were in the class Aves (Figure 10) and almost 

30% of the orders in Chordata in Appendix I were in the class Mammalia, thus each class in Chordata in 
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Appendix I was not equally diverse χ2 (6, N=50)=48.56, p<0.0001; Appendix A:Table 20 and Table 21. The 

expected values were too low to perform a chi square homogeneity of proportions test.  

Order  

Over half of the Mammalia species in Appendix I were Primates (Figure 11), thus each class was 

not represented equally in Appendix I χ2 (13, N=419)=1446.88, p<0.0001; Appendix A: Table 22 and Table 

23. In the chi square homogeneity of proportions test, the actual number of Primates in Appendix I was 

two species less than the expected number of Primates, therefore the number of species in the eighteen 

Mammalia orders in Appendix I did not deviate significantly from expected number of species χ2 (6, 

N=419)=21.76 p>0.001; Appendix A: Table 24 and Table 25.  

Family  

The family Hominidae represented less than three percent of Primates in Appendix I (Figure 12), 

however all Hominidae species (excluding Homo sapiens) were listed in Appendix I. 

Appendix II 

Kingdom  

Almost 85% of the species in Appendix II were Plantae species (Figure 13), thus each kingdom was 

not represented equally in Appendix II χ2 (1, N=35,286)=17236.70, p<0.0001; Appendix A: Table 2 Table 

1and Table 3: Chi Square Goodness of Fit Test for the Number of Species in Animalia and Plantae in 

Appendix I, Appendix II, and Appendix III of CITES. Also, in the chi square homogeneity of proportions test, 

the actual number of Plantae species in Appendix II exceeded the expected number of Plantae species by 

over 700 species, thus the numbers of species in Animalia and Plantae in Appendix II were not proportional 

χ2 (1, N=35,286)=104.32, p<0.0001; Appendix A: Table 4 and Table 5.      

  Over two-thirds of the orders in Appendix II were in the kingdom Animalia (Figure 14), 

thus each kingdom in Appendix II was not equally diverse χ2 (1, N=91)=11.97, p<0.001; Appendix A: Table 
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6 and Table 7. Also, the number of orders in Animalia and Plantae in Appendix II did not deviate 

significantly from the expected number of orders χ2 (1, N=91)=0.97, p>0.001; Appendix A: Table 8 and 

Table 9 .   

Phylum  

More than half of the Animalia species in Appendix II were Chordata species and almost 40% of 

the Animalia species in Appendix II were Cnidaria species (Figure 15). Therefore, each phylum was not 

represented equally in Appendix II χ2 (4, N=5312)=7959.38, p<0.0001; Appendix A: Table 26 and Table 11. 

The numbers of species in Annelida, Arthropoda, Chordata, Cnidaria, Echinodermata, and Mollusca in 

Appendix II were not proportional χ2 (2, N=5312)=98.72, p<0.0001; Appendix A: Table 12 and Table 13.  

 Almost 75% of the orders in Appendix II were in the phylum Chordata (Figure 16), thus each 

phylum in Appendix II was not equally diverse χ2 (4, N=62)=114.94, p<0.0001; Appendix A: Table 27 and 

Table 15. The expected values were too low to perform a chi square homogeneity of proportions test.   

Class  

Almost half of the Chordata species in Appendix II were Aves species and more Aves and Reptilia 

species were listed in Appendix II than Mammalia species (Figure 17). As a result, each class was not 

represented equally in Appendix II χ2 (6, N=3109)=3945.75, p<0.0001; Appendix A: Table 28 and Table 17. 

The actual number of Mammalia species in Appendix II (in the chi square homogeneity of proportions 

test) was over 200 species below the expected number of Mammalia species and the actual number of 

Aves species in Appendix II exceeded the expected number of Aves species by over 150 species. Thus, the 

numbers of species in Actinopterygii, Amphibia, Aves, Elasmobranchii, Mammalia, Reptilia, and 

Sarcopterygii in Appendix II were not proportional χ2 (4, N=3109)=78.71, p<0.0001; Appendix A: Table 18 

and Table 19.            

 Aves contained the most  orders in Chordata listed in Appendix II and was followed closely by 
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Mammalia (Figure 18), thus each class in Chordata listed in Appendix II was not equally diverse χ2 (6, 

N=46)=34.16, p<0.0001; Appendix A: Table 29 and Table 21. The expected values were too low to perform 

a chi square homogeneity of proportions test.   

Order  

Over half of the Mammalia species in Appendix II were Primates (Figure 19), and Appendix II lists 

all Primates that were not listed in Appendix I. As a result, each class was not represented equally in 

Appendix II χ2 (13, N=713)=2987.65, p<0.0001; Appendix A: Table 30 and Table 23. The numbers of species 

in the orders of Mammalia in Appendix I did not deviate significantly from expected numbers in the chi 

square homogeneity of proportions test χ2 (6, N=713)=35.45 p>0.001; Appendix A: Table 24 and Table 25.  

Family  

No Hominidae species were listed in Appendix II, for the six members of the family (excluding 

Homo sapiens) all were listed in Appendix I. 

Appendix III 

Kingdom  

Over 90% of the species in Appendix III were Animalia species (Figure 20), thus each kingdom was 

not represented equally in Appendix III χ2 (1, N=174)=119.17, p<0.0001; Appendix A: Table 2 and Table 3. 

Also, the numbers of Animalia and Plantae species in Appendix III were not proportional χ2 (1, N=174)= 

677.16, p<0.0001; Appendix A: Table 4 and Table 5.        

 Over 70% of the orders in Appendix III were in the kingdom Animalia (Figure 21), however each 

kingdom in Appendix III did not deviate significantly from the expected numbers in the chi square 

goodness of fit test χ2 (1, N=31)=5.45, p>0.001; Appendix A:Table 6 and Table 7. Also, the number of 

orders in Animalia and Plantae in Appendix III did not deviate significantly from expected numbers in the 

chi square homogeneity of proportions test χ2 (1, N=31)=0.05, p>0.001; Appendix A:Table 8 and Table 9.   
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Phylum  

Almost 85% of the Animalia species in Appendix III were Chordata species (Figure 22), therefore 

each phylum was not represented equally in Appendix III χ2 (3, N=159)=303.21, p<0.0001;  Appendix A: 

Table 31 and Table 11. The numbers of species in Annelida, Arthropoda, Chordata, Cnidaria, 

Echinodermata, and Mollusca in Appendix II were not proportional χ2 (2, N=159)=108.45, p<0.0001; 

Appendix A: Table 12 and Table 13.           

 Over 80% of the orders in Appendix III were in the phylum Chordata (Figure 23), thus each phylum 

in Animalia in Appendix III was not equally diverse χ2 (3, N=22)=38.00, p<0.0001; Appendix A: Table 32 

and  Table 15. The expected values were too low to perform a chi square homogeneity of proportions 

test.   

Class  

Almost half of the Chordata species in Appendix III were Mammalia species (Figure 24), thus each 

class was not represented equally in Appendix III χ2 (3, N=134)=55.91 p<0.0001; Appendix A:Table 33 and 

Table 17. The numbers of species in Actinopterygii, Amphibia, Aves, Elasmobranchii, Mammalia, Reptilia, 

and Sarcopterygii in Appendix III were not proportional χ2 (4, N=134)=35.28, p<0.0001; Appendix A: Table 

18 and Table 19.            

 Aves had the highest number of orders in Chordata in Appendix III and was followed closely by 

Mammalia (Figure 25). The expected values were too low to perform a chi square goodness of fit test and 

a chi square homogeneity of proportions test.   

Order  

Appendix III listed no Primates, for all of these species were listed in Appendix I or Appendix II.  
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Discussion 

The hypothesis that the unequal distribution of legal protections on endangered species is a result 

of kin selection was supported by the analysis of the taxonomy of the species listed in CITES. Species with 

a high degree of genetic similar to Homo sapiens (e.g. Animalia, Chordata, Mammalia, Primates, and 

Hominidae species) were provided with highly restrictive legal protections in CITES, thus the genetic 

similarity between a species and Homo sapiens was proportional to the legal protections on that species. 

Therefore, there is strong evidence that the unequal distribution of legal protections on endangered 

species is a result of kin selection. Likewise, there is also strong evidence CITES is an anthropocentric treaty 

and that interspecies kin selection can explain cases of interspecies cooperation.   

Species in the Three Appendices of CITES Combined 

The inherent difficulty of comparing widely different species is revealed when comparing orders 

such as Orchidales, which contains over 25,000 species, and Primates, which contains 633 species and 

subspecies (excluding Homo sapiens). In response to this difficulty, the hypothesis that the unequal 

distribution of legal protections on endangered species is a result of kin selection measured the qualitative 

aspect of legal protections, so it would not be skewed by the quantitative aspect of the number of species 

in each taxonomic classification. Therefore, the number of species in each taxonomic classification in 

CITES as whole has no bearing on the hypothesis. So, while the total number of Plantae species and 

Animalia species in CITES may seem to contradict the hypothesis, for the vast majority of species in CITES 

are Plantae species, these numbers have no bearing on the hypothesis. Likewise, while the total number 

of Aves species compared to Mammalia species in CITES may seem to contradict the hypothesis; while 

the total number of Chordata species in CITES may seem to support the hypothesis; and while the total 

number of Primates species in CITES may seem to support the hypothesis, all of these numbers have no 

bearing on the hypothesis. The hypothesis predicts the genetic similarity between a species and Homo 
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sapiens is proportional to the legal protections on that species, not proportional to the number of species 

legally protected, and therefore the number of species listed in CITES as a whole is irrelevant. Conversely, 

the restrictiveness of the legal protections used to protect species in CITES was relevant to the hypothesis, 

thus the appendix a species was listed in was used to assess the validity of the hypothesis.    

Association between appendix and taxonomic classification  

Which appendix of CITES a species was listed in was central to the hypothesis, therefore it was 

predicted the appendix a species was listed in was associated with the species’ kingdom, phylum, class, 

and order. These predictions were supported by the results, for the appendix a species was listed in was 

associated with the species’ kingdom, phylum, class, and order. However, while an association between 

a species’ taxonomy and the appendix of CITES it was listed in provides a foundation for the hypothesis, 

association in insolation does not support the hypothesis. For the hypothesis to be supported there must 

not only be an association between the taxonomic group a species belonged to and the appendix of CITES 

the species was listed in, but there must also be a pattern of species in taxonomic groups more related to 

Homo sapiens receiving more legal protections than species in less related taxonomic groups. In the 

context of CITES, this means Animalia, Chordata, Mammalia, Primates, and Hominidae species should be 

listed in Appendix I, and should have more species (with the exception of Hominidae) listed in Appendix I 

than species less related to Homo sapiens.  

Appendix I         

It was predicted species more related to Homo sapiens would have more species listed in 

Appendix I than species less related to Homo sapiens within the same taxonomic level. Therefore, it was 

predicted Appendix I would list significantly more Animalia species than Plantae species, and Appendix I 

did list significantly more Animalia species than Plantae species. Also, Appendix I listed almost 600 more 

Animalia species than the expected number of Animalia species in the chi square homogeneity of 
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proportions test. Thus, while far more Plantae species are listed in all of CITES, far more Animalia species 

are listed in the appendix with the most restrictive legal protections, legal protections proportional to 

Animalia’s genetic similarity to Homo sapiens.        

 Likewise, it was predicted Appendix I would list significantly more Chordata species than species 

in other phyla in Animalia; would list significantly more Mammalia species than species in other classes in 

Chordata; and would list significantly more Primates than species in other orders in Mammalia. These 

predictions were supported by the results, for in Appendix I almost all Animalia species were Chordata 

species; the majority of Chordata species were Mammalia species; and the majority of Mammalia species 

were Primates.             

 Appendix I listed more Mammalia species than Aves species, however it also listed more Aves 

orders than Mammalia orders. This discrepancy between the number of species and orders is a result of 

most Mammalia species in Appendix I coming from one order—Primates. Primates represent such a large 

percentage of Mammalia species in Appendix I that the diversity of Mammalia is less than would be 

expected given number of species within Mammalia. Thus, the measure of diversity reaffirms the 

importance of Primates in Appendix I and reaffirms that Primates were the most protected order of 

Mammalia species in CITES. In short, Primates in CITES were provided with highly restrictive legal 

protections proportional to their genetic similarity to Homo sapiens.   

 Additionally, Appendix I listed significantly more Chordata species and more Mammalia species 

than the expected number of Chordata species and Mammalia species in the chi square homogeneity of 

proportions test. Finally, as predicted, the entire family of Hominidae (excluding Homo sapiens) was listed 

in Appendix I. Conversely, the number of Primates in Appendix I was not significantly higher than the 

expected number of Primates in the chi square homogeneity of proportions test, and the expected 

number of Primates was two species higher than the actual number of Primates. However, the lack of 

deviation from expected number of Primates in Appendix I does not refute the hypothesis, and can be 
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explained by the number of Primates in all of CITES and the deviation from the expected numbers of 

Primates in Appendix II and Appendix III.        

 The lack of deviation in Appendix I is a result of the high number of Primates listed in CITES, for 

no other order in Mammalia in CITES lists as many species as Primates. Therefore, the expected number 

of Primates in Appendix I was large, thus a lack of deviation from this large number supports the 

hypothesis. Given the genetic similarity between Homo sapiens and Primates, it was predicted large 

numbers of Primates would be listed in Appendix I, and this prediction was supported by the results, for 

the majority of Mammalia species listed in Appendix I were Primates. Thus, the representation of Primates 

in Appendix I supports the hypothesis and the lack of deviation from the expected number of Primates in 

Appendix I does not refute the hypothesis.        

 The lack of deviation from the expected number of Primates in Appendix I can also be explained 

by the deviations from the expected numbers of Primates in Appendix II and Appendix III. The number of 

Primates in Appendix II is approximately 35 species higher than the expected number of Primates, and 

this deviation is caused by Appendix II listing all Primates not listed in Appendix I and not listed by 

taxonomy in Appendix II (Favre, 1989). Thus the number of Primates in Appendix II is inflated by this 

statement, for without this statement the number of Primates in Appendix II would only be 15 species 

greater than the expected number of Primates.        

 Also, Appendix III that provides extremely weak semi-international legal protections 

(Heijnsbergen, 1997) lists no Primates, but the expected number of Primates in Appendix III is 

approximately 33 species. The deviation from the expected number of Primates in Appendix III strongly 

supports the hypothesis, for a taxonomic group so genetically similar to Homo sapiens should not be 

provided with weak semi-international legal protections if the genetic similarity between Homo sapiens 

and Primates is proportional to the legal protections on Primates.     

 In short, the lack of deviation in Primates in Appendix I and the deviation in Primates in Appendix 
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II do not refute the hypothesis. Despite the lack of deviation in Appendix I, significantly more Primates 

within Mammalia were listed in Appendix I than less related Mammalia species. Also, despite the deviation 

in Primates in Appendix II, all Primates were provided with international legal protections (Favre, 1989), 

for no Primates were listed in Appendix III. Therefore, Primates receive highly restrictive legal protections 

proportional to their genetic similarity to Homo sapiens.       

 As discussed earlier, comparing the number of species in one taxonomic group to the number of 

species in another taxonomic group is difficult, for different taxonomic groups have very different 

numbers of species (Futuyma, 2013). However, the results from Appendix I that compare the numbers of 

species in different taxonomic groups do strongly support the hypothesis. Despite Plantae species 

representing 80% of the species listed in CITES as a whole, the majority of species listed in Appendix I were 

Animalia species. Despite invertebrate species representing more species on Earth than vertebrate 

species (The IUCN Red List of Threatened Species, 2014), almost all the Animalia species listed in Appendix 

I were Chordata species. Despite the classes Aves, Amphibia, and Reptilia each containing more species 

on Earth than Mammalia, the majority of Chordata species in Appendix I were Mammalia species. In 

addition, while the order of Primates does contain a high number of species compared to other orders of 

Mammalia on Earth, the other orders of Mammalia when combined contain a far greater number of 

species, and yet the majority of Mammalia species in Appendix I were Primates. Animalia species 

represent a minority of the species listed in CITES, and Chordata, Mammalia, and Primate species 

represent a minority of the species living on Earth, and yet these species comprise the majority of 

Appendix I. Thus, there is strong evidence that kin selection is responsible for the unequal distribution of 

legal protections in CITES, for species closely related to Homo sapiens are consistently protected with 

highly restrictive legal protections proportional to their genetic similarity to Homo sapiens.   

 However, the numbers of species with a taxonomic group does not provide the whole picture, as 

seen in the case of the family Hominidae. Homo sapiens belong to the family Hominidae and while the 
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family Hominidae only represented a very small percentage of the Primates listed in Appendix I, these 

results still support the hypothesis, for all Hominidae species (excluding Homo sapiens) were listed in 

Appendix I. Thus, the species the most related to Homo sapiens in CITES are protected with the most 

restrictive legal protections in CITES, legal protections proportional to their genetic similarity to Homo 

sapiens.           

 The predictions made regarding the representation of Animalia, Chordata, Mammalia, Primates16, 

and Hominidae species in Appendix I were supported by results. Therefore, the genetic similarity between 

a species and Homo sapiens is proportional to the legal protections on that species, for taxonomic groups 

more related to Homo sapiens had significantly higher numbers of species (or in the case of Hominidae all 

members of the taxonomic group) listed in Appendix I than less related taxonomic groups. In CITES, there 

is a clear pattern of species highly related to Homo sapiens receiving highly restrictive legal protections, 

and thus the hypothesis that the unequal distribution of legal protections is a result of kin selection is 

strongly supported.   

Appendix II 

Plantae 
Despite outward appearances, the large number of Plantae species listed in Appendix II does not 

refute the hypothesis. If the genetic similarity between a species and Homo sapiens is proportional to the 

legal protections on that species, then Plantae species (the species least related to Homo sapiens in CITES) 

should be protected with weak legal protections. As discussed earlier, Appendix II provides species with 

far less restrictive and therefore weaker legal protections than Appendix I, for Appendix II only prohibits 

trade in “exceptional cases”, while Appendix I only allows trade in “exceptional circumstances” (How CITES 

Works, 2012). Therefore, Appendix I should list significantly less Plantae species than Animalia species, 

                                                           
16Excluding the prediction regarding the expected number of Primates in the chi square homogeneity of 
proportions test.  
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and Appendix II should primarily list species less related to Homo sapiens. As predicted, Appendix I listed 

significantly less Plantae species than Animalia species, and only 1% of Plantae species in CITES were listed 

in Appendix I. Also as predicted, Appendix II listed primarily Plantae species, and almost 99% of Plantae 

species in CITES were listed in Appendix II. Appendix II provides somewhat weak legal protections, and 

thus we would expect less related species (and even large numbers of less related species such as Plantae) 

to be listed in Appendix II. The distribution of Plantae species in Appendix I and Appendix II reveals Plantae 

as a kingdom is consistently given weak legal protections, and thus supports the hypothesis.  

 The kingdom of Plantae in CITES and especially in Appendix II lacks diversity, for the vast majority 

of species in Plantae belong to the order Orchidales. The number of Plantae species in Appendix II and in 

all of CITES is inflated17 by the order Orchidales, which contains approximately 25,384 species18. Thus, the 

large number of Plantae listed in CITES is a result of the large number of species within the order 

Orchidales. However, despite having the most species listed in CITES, the order Orchidales is not the most 

legal protected order in CITES. For example, only 0.39% of Orchidales species (100 species) were listed in 

Appendix I, while 34.76% of Primates (220 species) were listed in Appendix I. Therefore, the large numbers 

of Orchidales species in CITES does not refute the hypothesis, for the somewhat weak legal protections 

on Orchidales are roughly proportional to the genetic dissimilarity between Orchidales and Homo sapiens. 

Given the genetic dissimilarity between Plantae species and Homo sapiens, we would expect Plantae 

species to be protected with weak legal protections, and the large number of Plantae species in Appendix 

II supports this prediction and thus supports the hypothesis.   

                                                           
17 In fact, if the order Orchidales was not listed on CITES, the treaty as a whole would contain more Animalia 
species than Plantae species and Appendix II would contain more Animalia species than Plantae species. 
18 The exact number of Orchidales species is unknown and the number of Orchidales species and varieties is an 
estimation (as of October 2, 2013) provided directly by CITES:  
http://www.cites.org/sites/default/files/eng/disc/species_02.10.2013.pdf.  

http://www.cites.org/sites/default/files/eng/disc/species_02.10.2013.pdf
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Cnidaria and Aves 
Similarly to Orchidales, large numbers of Cnidaria species were listed in Appendix II, for Cnidaria 

species comprised nearly 40% of the Animalia species in Appendix II. Given the genetic dissimilarity 

between Cnidaria species and Homo sapiens, we would expect Cnidaria species to be protected with weak 

legal protections, and this is what we observe in CITES. No Cnidaria species are listed in Appendix I as 

befitting their genetic dissimilarity to Homo sapiens and all Cnidaria species are listed in either Appendix 

II or Appendix III of CITES. Thus, Cnidaria species were protected with weak legal protections in CITES 

roughly proportional to their genetic similarity to Homo sapiens.         

 Similarly to Cnidaria, large numbers of Aves species19 were listed in Appendix II, and more Aves 

species were listed in Appendix II than Mammalia species. However, the large number of Aves species in 

Appendix II supports the hypothesis. In Appendix II, the number of Aves species exceeded the expected 

number20 of Aves species by approximately the same number of species that Aves was below the expected 

number of Aves species in Appendix I. Also, in Appendix II the number of Mammalia species was below 

the expected number of Mammalia species by approximately the same number of species that Mammalia 

exceeded the expected number of Mammalia species in Appendix I. The deviations from the expected 

number of Aves species reveals Aves species are primarily placed in Appendix II, primarily provided with 

weaker level of legal protections proportional to their genetic similarity to Homo sapiens. Conversely, 

while Mammalia deviated from the expected number of Mammalia species in Appendix I and Appendix II 

in the chi square homogeneity of proportions test, Mammalia did not deviate from the expected number 

                                                           
19 Similarly to Plantae, the class Aves lacks diversity. In Appendix II, Aves contained approximately twice as many 
species as Mammalia, however Aves only contained one more order than Mammalia. The discrepancy between 
the number of species and orders in Aves is because four Aves orders—Apodiformes, Falconiformes, 
Psittaciformes, and Strigiformes—out of the fifteen Aves orders contained almost 90% of the Aves species in 
Appendix II. While, these results have no bearing on the hypothesis, the high number of Orchidales and Aves 
species (especially Apodiformes and Psittaciformes species) listed in CITES may relate to a sensory bias of Homo 
sapiens (discussed in Interspecies Kin Selection and Other Byproducts).  
20 The expected numbers referred to in this paragraph were generated from the chi square homogeneity of 
proportions test.  
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of Mammalia species if the number of Mammalia species in Appendix I and Appendix II was proportional 

to Mammalia’s genetic similarity to Homo sapiens. Given the weak legal protections provided by Appendix 

II (Favre, 1989), the strong legal protections provided by Appendix I, the genetic dissimilarity between 

Aves species and Homo sapiens, and the genetic similarity between Mammalia species and Homo sapiens, 

the legal protections on Aves and Mammalia species were proportional to their genetic similarity to Homo 

sapiens.            

 If the genetic similarity between a species and Homo sapiens is proportional to the legal 

protections on that species, then species less related to Homo sapiens such as Plantae, Aves, and Cnidaria 

species would be provided with less restrictive legal protections than species more related to Homo 

sapiens. Thus, these taxonomic groups should have higher numbers of species listed in Appendix II or 

Appendix III, and should have lower numbers of species listed in Appendix I. These predictions were 

supported by the results, so while the high numbers of Plantae, Aves, and Cnidaria species in Appendix II 

may seem to refute the hypothesis, the results actually support the hypothesis.   

Primates 
The majority of Primates were listed in Appendix II, and when viewed in isolation these results 

seem to refute the hypothesis. Primates are genetically very similar to Homo sapiens and since Appendix 

II provides far weaker legal protections than Appendix I (Favre, 1989), the genetic similarity between 

Primates and Homo sapiens appears not to be proportional to the legal protections on Primates. However, 

when the number of Primates in Appendix II is viewed in the context of CITES as a whole, the genetic 

similarity between Primates and Homo sapiens is proportional to the legal protections on Primates.  

 As predicted, all Primates were listed in Appendix I or in Appendix II21 and no Primates were listed 

                                                           
21 CITES specifically lists all Primates not listed in Appendix I in Appendix II, resulting in the following statement 
produced by the Animals Committee in 2012:  
 “A few scientists have seriously pointed out that - according to the official taxonomic mammal references 
  -the current listing of PRIMATES spp. technically includes Homo sapiens as well. This is formally correct 

and no new situation as both former mammal references [HONACKI & al. (1982) and WILSON & REEDER 
 (1992)] already placed Homo sapiens into the order Primates. According to the opinion of the 
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in Appendix III. While Appendix I provides stronger legal protections than Appendix II, both Appendix I 

and Appendix II provide uniform international legal protections22 and require a non-detrimental finding 

(Favre, 1989). Conversely, Appendix III does not provide uniform international legal protections and does 

not require a non-detrimental finding, and thus protects species with inherently weak semi-international 

legal protections. Therefore, the entire order of Primates was protected with international legal 

protections. The legal protections on Primates encompass the entire order and encompass the entire 

planet, therefore Primates are protected with legal protections proportional to their genetic similarity to 

Homo sapiens.           

 However, the legal protections on Orchidales encompass the entire order and encompass the 

entire planet as well, nevertheless, the legal protections provided to Orchidales and Primates were 

proportional to their respective genetic similarities to Homo sapiens. The key is Appendix I. As discussed 

earlier, 0.39% of Orchidales species (100 species) and 34.76% of Primates (220 species) were listed in 

Appendix I. Therefore, the large number of Primates in Appendix I reveals Primates as an order was 

protected with more restrictive legal protections than the order Orchidales, thus the legal protections 

provided to Orchidales and Primates was proportional to their respective genetic similarities to Homo 

sapiens. Likewise, the large number of Primates in Appendix I and the international legal protections on 

all Primate species reveals Primates as an order were protected with restrictive international legal 

protections proportional to their genetic similarity to Homo sapiens. In short, how CITES as whole protects 

the order of Primates strongly supports the hypothesis.     

                                                           
nomenclature specialist of the AC [Animal Committee] it is clear - at least by the definition of specimen in 
article I of the Convention - that the term “wild fauna and flora” of the Convention does not include 
human beings as well. Therefore she considers that there is no need to add any footnote to PRIMATES 
spp. or Hominidae spp. indicating that Homo sapiens is not covered by the higher taxon listing.” 

The full document can be found here: http://www.cites.org/sites/default/files/eng/com/ac/26/E26-20.pdf  
22 CITES only protects species that are located in parties to the treaty, however, since 180 countries are party to 
the treaty (Member Countries, 2013), the legal protections in Appendix I and Appendix II can be characterized as 
“international” because only a small number of countries are not party to the treaty (Heijnsbergen, 1997). 

http://www.cites.org/sites/default/files/eng/com/ac/26/E26-20.pdf
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Appendix III 

Appendix III protects less than 200 species with very weak and inconsistent legal protections 

(Favre, 1989). Therefore, it was predicted Appendix III would not list any Hominidae or Primates species. 

This prediction was supported by the results, for all Hominidae and Primate species (excluding Homo 

sapiens) were listed in Appendix I and Appendix II, and thus were protected with far more restrictive legal 

protections than those provided by Appendix III. No other predictions regarding Appendix III were made, 

and while the distribution of species in Appendix III mirrors the distribution of species in Appendix I, these 

results have very little bearing on the hypothesis.       

 In Appendix III, almost all of the listed species were Animalia species, almost all of the listed 

Animalia species were Chordata species, and almost half of the listed Chordata species were Mammalia 

species.  However, it is difficult to discern how the contents of Appendix III relate to the hypothesis. The 

majority of species listed in Appendix III are genetically similar to Homo sapiens, however Appendix III lists 

only 0.5% of the species listed in CITES. Therefore, the listing of 63 Mammalia species, 134 Chordata 

species, and 159 Animalia species in Appendix III does not invalidate the prediction that the genetic 

similarity between a species and Homo sapiens is proportional to the legal protections on that species, 

which is supported by the listing of 419 Mammalia species, 723 Chordata species, and 791 Animalia 

species in Appendix I. What species were listed in Appendix III does not relate to the hypothesis, but what 

species were not listed in Appendix III—namely no Hominidae and no Primate species—does relate and 

strongly support the hypothesis.    

Summary of Findings 
The hypothesis that the unequal distribution of legal protections on endangered species is a result 

of kin selection was supported by the analysis of the taxonomy of the species listed in CITES, for the 

genetic similarity between a species and Homo sapiens was proportional to the legal protections on that 

species. The strongest evidence for this hypothesis is the distribution of species in Appendix I. In Appendix 
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I, the majority of listed species were Animalia species, the majority of Animalia species were Chordata 

species, the majority of Chordata species were Mammalia species, and the majority of Mammalia species 

were Primates. Finally, all Hominidae species (excluding Homo sapiens) were listed in Appendix I. 

Additionally, the legal protections provided the order of Primates strongly supports the hypothesis, for all 

Primates were given international legal protections (i.e. listed in Appendix I or Appendix II). The species in 

Animalia, Chordata, Mammalia, Primates, and Hominidae are genetically similar to Homo sapiens, and 

thus Appendix I listed more Animalia, Chordata, Mammalia, and Primates species than genetically 

dissimilar species. As a result, Animalia, Chordata, Mammalia, Primates, and Hominidae were protected 

with highly restrictive legal protections in CITES, legal protections proportional to their genetic similarity 

to Homo sapiens.           

 The proportionality predicted by kin selection is most observable in Appendix I, for when the 

amount of aid is high—when legal protections are the most restrictive—the genetic similarity between 

the species and Homo sapiens is likewise high. However, when the amount of aid is less—when the legal 

protections are less restrictive—the proportionally predicted by kin selection is only generally observable. 

For example, the weak legal protections placed on species genetically dissimilar to Homo sapiens such as 

Plantae, Cnidaria, and Aves (which were primarily listed in Appendix II of CITES) were proportional to their 

genetic similarity to Homo sapiens. In Appendix I, there is a clear pattern of proportionality between 

genetic similarity to Homo sapiens and legal protections, while in Appendix II, there is only a general 

pattern of proportionality. However, the clear pattern of proportionality in Appendix I strongly supports 

the hypothesis that the unequal distribution of legal protections on endangered species is a result of kin 

selection, which has implications for CITES as well as the theory of kin selection.   

Alternative Explanations 
  An alternative explanation for the unequal distribution of legal protections in CITES is the survival 

status of the listed species, for perhaps the species most related to Homo sapiens are also the most 
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endangered species on Earth. However, this is an explanation of how there is an unequal distribution of 

legal protections in CITES, and not an explanation of why there is an unequal distribution of legal 

protections in CITES. Thus, even if this explanation was true, the hypothesis would still be supported by 

the results.            

 As discussed earlier, how a species is listed in Appendix I is influenced by more than just the 

survival status of the species. First, the biological criteria for listing species in Appendix I are extremely 

vague (Favre, 1989) and the survival status of many endangered species is not fully known given the 

“imperfect knowledge” of conservation biology (Cox, 2007). Second, listing a species in Appendix I has 

substantial political and economic implications at both the international and domestic scales (Favre, 

1989). Therefore, the decision to list a species in Appendix I is rife with uncertainty and political and 

economic drawbacks, and thus it is unlikely the survival status of endangered species is the sole proximate 

cause of the unequal distribution of legal protections in CITES. However, the proximate causes for listing 

a species in Appendix I explain how a species is listed, not why a species is listed, and thus have no bearing 

on the hypothesis.            

 This thesis analyzed why there was an unequal distribution of legal protections on endangered 

species, not how there was an unequal distribution of legal protections on endangered species. Therefore, 

this thesis analyzed the ultimate function of protecting endangered species, not the proximate causes of 

protecting endangered species. Thus, this thesis hypothesized the unequal distribution of legal 

protections on endangered species was a result of kin selection, for kin selection describes the ultimate 

function of behavior, not the proximate causes of behavior (Alcock, 2012). As a result, the multitude of 

potential proximate causes of listing endangered species in CITES, explanations of how there is an unequal 

distribution of legal protections on endangered species in CITES, had no bearing on the hypothesis.  

 Kin selection is not concerned with motivations but with end results (Alcock, 2012). For example, 

when a mother sacrifices her life for her child, kin selection is occurring regardless of her motivations—
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the proximate causes—behind the sacrifice. Likewise, kin selection is occurring in CITES regardless of the 

motivations—the proximate causes—behind listing a species. Therefore, it does not matter if Hominidae 

species were listed in Appendix I because their life histories make them vulnerable to extinction 

(Heijnsbergen, 1997). It does not matter if a species was listed in Appendix II because of its economic 

worth (Favre, 1989). It does not matter if a species was listed in Appendix III because there was no political 

will to list it in Appendix I or Appendix II. What matters is that species closely related to Homo sapiens 

were provided with highly restrictive legal protections. What matters is the end results. Therefore, the 

hypothesis is unconcerned with the survival status of Animalia, Chordata, Mammalia, Primates, and 

Hominidae species, but concerned with and strongly supported by the large numbers of these species 

listed in Appendix I.           

 Another alternative explanation for how there is an unequal distribution of legal protections in 

CITES is our knowledge of the survival status of the listed species (Shields, 2015). Perhaps the species most 

related to Homo sapiens are also the most studied species on Earth, and therefore are listed in Appendix 

I because we are aware they are endangered. While this explanation has no bearing on the hypothesis23, 

if it is correct, it begs the question of why the species most related to Homo sapiens are the most studied 

species on Earth. The answer to this question could again be kin selection, and the proportionality 

predicted by kin selection could be extended to the amount of research conducted on a species and the 

amount of funding research on a species receives. For example, it could be predicted the genetic similarity 

between a species and Homo sapiens is proportional to the amount of research conducted on the species. 

Likewise, it could be predicted the genetic similarity between a species and Homo sapiens is proportional 

to the amount of funding research on the species receives. Thus, the proportionality predicted by kin 

                                                           
23 Our knowledge of the survival status of the listed species is a potential proximate cause of how species are listed 
in Appendix I, and does not explain why species are listed in Appendix I. Therefore, our knowledge of the survival 
status of the listed species, like any other proximate cause, is unconnected to the hypothesis.  
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selection could be used to analyze the evolutionary roots of the many ways Homo sapiens interact with 

other species. 

Intrinsic or Genetic Worth? 

Wildlife conservations law such as CITES (or rather Appendix I of CITES) are often lauded as 

“ecocentric”24  laws that recognize the “intrinsic worth”25 of non-Homo sapiens. If CITES was truly an 

ecocentric law, it would serve the interests of the “biotic community”, and it would value the needs of 

Homo sapiens no more than the needs of wildlife and ecosystems (Callicott, 1997). Conversely, if CITES 

was an anthropocentric26  law, it would serve the interests of Homo sapiens, and it would value the needs 

of Homo sapiens over the needs of wildlife and ecosystems (Anthropocentric). Therefore, if a law was 

influenced by kin selection, it would be an anthropocentric law.      

 Kin selection is a selfish behavior, for it primarily benefits the organism performing the behavior 

(Alcock, 2012), and thus a law influenced by kin selection would primarily benefit its creators—Homo 

sapiens. Therefore, given the strong evidence that the unequal distribution of legal protections in CITES is 

a result of kin selection, CITES is an anthropocentric law. CITES increases the indirect fitness of Homo 

sapiens by placing restrictive legal protections on species more genetically similar to Homo sapiens, and 

thus serves the selfish interests of Homo sapiens. As a result, CITES is not an “ecocentric” law that 

recognizes the “intrinsic worth” of non-Homo sapiens (Callicott, 1997), but an anthropocentric law that 

                                                           
24 An ecocentric perspective adheres to Aldo Leopold’s “Land Ethic” where “a thing is right when it tends to 
preserve the integrity, stability, and beauty of the biotic community” (1949). The “biotic community” encompasses 
every part of the natural environment and under this ethic every member of the “biotic community” has intrinsic 
worth (Callicott, 1997). An ecocentric perspective places Homo sapiens in the humble position of being just 
another member of the “biotic community” and values the wellbeing of the “biotic community” over the selfish 
interests of Homo sapiens.   
25 Intrinsic worth refers to the value an entity has independent of its economic utility to Homo sapiens (Callicott, 
1997).  
26 Anthropocentric is defined by Merriam-Webster as “considering human beings as the most significant entity of 
the universe” (Anthropocentric) and is often referred to as a human-centered worldview (Callicott, 1997).  
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recognizes the “genetic worth”27 non-Homo sapiens have in increasing the indirect fitness of Homo 

sapiens (Alcock, 2012). CITES is not a form of ecological altruism, but CITES is selfish.   

 If it was hypothesized that CITES is an anthropocentric law, then it could be predicted the genetic 

similarity between a species and Homo sapiens is proportional to the legal protections on that species. 

Conversely, if it was hypothesized that CITES is an ecocentric law, then it could be predicted each 

taxonomic group would be equally represented in CITES28. For example, it could be predicted Plantae and 

Animalia would list the same number of species in Appendix I, for Plantae and Animalia species are equally 

important members of the “biotic community” (Leopold, 1949). The hypothesis that CITES is an ecocentric 

law was tested in this thesis, for the null hypothesis in the chi square goodness of fit test was that each 

taxonomic group would be equally represented in CITES. However, the null hypothesis was rejected at the 

kingdom, phylum, and class level in all three appendices. Additionally, the null hypothesis was rejected at 

the order level of Appendix I and Appendix II29. Thus, the hypothesis that CITES is an ecocentric law, can 

be rejected, for not only is there strong evidence that CITES is an anthropocentric law, which favors species 

more related to Homo sapiens, but there is also strong evidence against CITES treating each species 

equally as a member of the “biotic community”.   

                                                           
27 CITES specifically states species are conserved for non-economic values such as scientific, aesthetic, cultural, and 
recreational values (Heijnsbergen, 1997, p. 56). However, given the influence of kin selection in CITES, perhaps 
CITES should add “genetic value” to this list like the Protocol Agreement on the Conservation of Common Natural 
Resources (which contained provisions relating to CITES) did. This agreement recognized “the increasing values of 
the world fauna and flora with regard to their ecologic, genetic, scientific, social, economic, cultural, educational 
and recreational aspects” (Treaties: Record Details). In the context of this agreement “genetic…aspects” most likely 
referred to values associated with biodiversity, however, is it not ironic that an agreement that could be lauded as 
“ecocentric” specifically mentions what makes the agreement anthropocentric—recognizing the genetic worth 
that species have to Homo sapiens? 
28 While different taxonomic groups contain very different numbers of species, at the large levels of the kingdom, 
phylum, class, and order it is possible for these groups to have approximately equal numbers of species. Also, to 
overcome any error that might be introduced by very different numbers of species in each group, a very low α 
value of 0.001 was used to assess the statistical significance of the chi square goodness of fit test.  
29 The chi square goodness of fit test was not performed on the orders of Mammalia species listed in Appendix III 
because no Primates were listed in Appendix III.  
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Interspecies Kin Selection and Other Byproducts        

The evidence indicates the genetic similarity between a species and Homo sapiens is proportional 

to the legal protections on that species, and thus strongly supports the hypothesis that the unequal 

distribution of legal protections on endangered species is a result of kin selection. In essence, this thesis 

has found evidence of kin selection influencing the interactions between Homo sapiens and other species, 

and thus has found evidence of interspecies kin selection. Interspecies kin selection in CITES does increase 

the fitness of Homo sapiens by increasing the frequency of alleles (or rather preventing the loss of alleles) 

that Homo sapiens share with other Hominidae, Primates, Mammalia, Chordata, and Animalia species. 

However, interspecies kin selection is most likely a byproduct of intraspecies kin selection.  

 Intraspecies kin selection is highly adaptive, and thus Homo sapiens have the ability to recognize 

different levels of kin from the closest level of the immediate family to evermore distant levels of kin such 

as the ethnic group, the race, and the species (Krupp, DeBruine, Jones, & Lalumiere, 2012). Kin recognition 

is facilitated by facial phenotype, and thus certain facial phenotypes (such as the large head, big eyes, and 

round cheeks associated with Kindchenschema [Lorenz, 1943]) trigger certain highly adaptive behaviors 

(such as cooperation) (DeBruine, Jones, Little, & Perrett, 2008). Thus, when other closely related species 

possess facial phenotypes similar to the facial phenotypes of Homo sapiens, the same adaptive response 

is triggered (Alvergne, et al., 2009). Thus, the ability of Homo sapiens to recognize kin outside of our 

species30 is a byproduct of a visual system attuned to intraspecies kin recognition, and cooperative 

behaviors between Homo sapiens and other closely related species are byproducts of a behavioral system 

primed to cooperate with intraspecies kin. Interspecies kin selection is a byproduct of intraspecies kin 

selection, but that does not make interspecies kin selection any less adaptive or any less of a reality.  

 CITES may not only be influenced by the byproducts of intraspecies kin selection, but also by the 

                                                           
30 Interspecies kin recognition facilitated solely by facial phenotype has been observed between Homo sapiens and 
other Primates (Alvergne, et al., 2009).    
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byproducts Homo sapiens’ visual systems. While the large numbers of Plantae species (especially 

Orchidales), and Aves species listed in CITES does not refute the hypothesis that the unequal distribution 

of legal protections on endangered species is a result of kin selection, these numbers require an 

explanation. Why are these species listed in CITES? Why is international trade in Orchidales and Aves 

species, especially Apodiformes species (hummingbirds and swifts [Myers, “Apodiformes”, 2015]) and 

Psittaciformes species (parrots [Myers, “Psittaciformes”, 2015]) (which have the highest number of 

species in Aves), such a concern to the Conference of Parties? Why are these species traded so heavily to 

begin with? Perhaps the answers to these questions about the listing of Orchidales and Aves species, lies 

in experiments performed on Aves species.        

 There is evidence in Australian grassfinches that sexual selection is driven by a sensory bias of the 

female (Burley & Symanski, 1998). This sensory bias favors certain phenotypes over others and is thought 

to be a byproduct of an otherwise adaptive behavior. For example, the sensory bias may favor a particular 

color because that color is the color of the species’ source of food, shelter, or some other basic need 

(Coyne, 2009). Applying these results to Homo sapiens, perhaps the vibrantly colored Orchidales, 

Apodiformes, and Psittaciformes species listed in CITES are legal protected and internationally traded 

because Homo sapiens have a sensory bias that favors the vibrant colors of these species. Perhaps seeking 

out vibrantly colored objects is adaptive in some way, or (more likely) the complex visual system of Homo 

sapiens favors certain colors over others. The visual system of Homo sapiens confers a large fitness 

benefit, and perhaps the same visual system that allows Homo sapiens to recognize kin, avoid danger, and 

find food (Alcock, 2012), also favors certain colors as a byproduct of its structure. So while Animalia, 

Chordata, Mammalia, Primates, and Hominidae species are listed in CITES because of interspecies kin 

selection, a byproduct of intraspecies kin selection, perhaps Orchidales and Aves species are listed on 

CITES because of a sensory bias of Homo sapiens, a byproduct of an adaptive visual system.  
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Interspecies Cooperation and Kin Selection 

 CITES can be characterized as interspecies cooperation31 between Homo sapiens and other 

species. The species protected in CITES receive a benefit by being listed, for CITES only allows trade in 

Appendix I and Appendix II species when there has been a non-detrimental finding (Favre, 1989). Also, 

Homo sapiens receive a benefit by listing species in CITES, for CITES places the most restrictive legal 

protections on species more related to Homo sapiens and thus CITES increases the indirect fitness of Homo 

sapiens. Therefore, CITES is an example of interspecies cooperation, for both Homo sapiens and the listed 

species are receiving a benefit from CITES. Also, given that interspecies kin selection influences what 

species are listed in CITES, CITES is an example of interspecies cooperation that can be explained by 

interspecies kin selection.          

 Interspecies cooperation is often explained through reciprocal altruism, and kin selection is never 

examined as an explanation of interspecies cooperation (Trivers, 1971). However, this thesis has found 

evidence of interspecies kin selection influencing interspecies cooperation. While the findings of this 

thesis likely have limited applicability, for interspecies kin selection likely only influences interspecies 

cooperation involving Homo sapiens, interspecies kin selection does occur. All life is kin, therefore 

interspecies kin selection is theoretically possible, and therefore the possibility of interspecies kin 

selection should be assessed when attempting to explain interspecies cooperation. The explanatory 

power of kin selection should not be limited to intraspecies interactions, for as this thesis has shown, kin 

selection has great explanatory power when it comes to interspecies interactions.   

  

                                                           
31 Cooperation is defined by Dictionary.com as an “activity shared for mutual benefit” (Cooperation).  
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Conclusion 
“We worry more about how we treat animals. None of this has anything to do with evolution…” 

(Coyne, 2009, p. 230)          

 How we treat animals—how we legally protect them—does have something to do with evolution, 

for as this thesis has shown, how we treat animals is influenced by kin selection. The hypothesis that the 

unequal distribution of legal protections on endangered species is a result of kin selection was supported 

by the analysis of CITES, for species genetically similar to Homo sapiens were provided with highly 

restrictive legal protections proportional to their high degree of genetic similarity to Homo sapiens. The 

touch of nature, or rather the touch of natural selection, has made the whole world kin, and thus the 

explanatory power of kin selection should not be limited to intraspecies interactions, but should be 

extended to interspecies interactions. Thus, the explanatory power of evolution should not be limited to 

rudimentary human behaviors, but should be extended to our most complex behaviors.  
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Figures 

Figure 1: The Total Number of Animalia and Plantae Species Listed in the Three Appendices of CITES                               
This pie chart compares the number of species in the kingdoms Animalia and Plantae listed in the three 
appendices of CITES. There were 6262 Animalia species and 30355 Plantae species listed in CITES.  
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Figure 2: The Total Number of Species in the Phyla of Animalia Listed in the Three Appendices of CITES                               
This pie chart compares the number of species in the phyla of Animalia listed in the three appendices of 
CITES. There were 3966 Chordata species, 2108 Cnidaria species, 104 Arthropoda species, 81 Mollusca 
species, two Annelida species, and one Echinodermata species listed in CITES.  
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Figure 3: The Total Number of Species in the Classes of Chordata Listed in the Three Appendices of CITES                               
This pie chart compares the number of species in the classes of Chordata listed in the three appendices of 
CITES. There were 90 Actinopterygii species, 169 Amphibia species, 1636 Aves species, 17 Elasmobranchii 
species, 1195 Mammalia species, 856 Reptilia species, and three Sarcopterygii species listed in CITES.  
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Figure 4: The Total Number of Species in the Orders of Mammalia Listed in the Three Appendices of CITES                               
This pie chart compares the number of species in the orders of Mammalia listed in the three appendices 
of CITES. There were 102 Artiodactyla species, 181 Carnivora species, 94 Cetacea species, 71 Chiroptera 
species, four Cingulata species, two Dasyuromorphia species, 16 Diprotodontia species, two Lagomorpha 
species, three Monotremata species, two Peramelemorphia species, 27 Perissodactyla species, eight 
Pholidota species, five Pilosa species, 633 Primates, three Proboscidea species, 18 Rodentia species, 20 
Scandentia species, and four Sirenia species in CITES.  
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Figure 5: Comparison of the Number of Species in Animalia and Plantae in Appendix I of CITES                                                 
This pie chart compares the number of Animalia and Plantae species listed in Appendix I of CITES. There 
were 791 Animalia species and 366 Plantae species listed in Appendix I.  

 

 

  

Animalia
68%

Plantae
32%

Comparison of the Number of Species in Animalia and Plantae 
in Appendix I of CITES

Animalia Plantae



68 
 

 

Figure 6: Comparison of the Number of Orders in Animalia and Plantae in Appendix I of CITES                                                 
This pie chart compares the number of orders in the kingdoms Animalia and Plantae in Appendix I of 
CITES. There were 52 Animalia orders and 13 Plantae orders in Appendix I.  
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Figure 7: Comparison of the Number of Species in the Phyla of Animalia in Appendix I of CITES                                                 
This pie chart compares the number of species in the phyla of Animalia in Appendix I of CITES. There were 
three Arthropoda species, 723 Chordata species, and 65 Mollusca species listed in Appendix I.  
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Figure 8: Comparison of the Number of Orders in the Phyla of Animalia in Appendix I of CITES                                                 
This pie chart compares the number of orders in the phyla of Animalia in Appendix I of CITES. There were 
49 Chordata orders, one Arthropoda order, and two Mollusca orders in Appendix I.  
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Figure 9: Comparison of the Number of Species in the Classes of Chordata in Appendix I of CITES                                                 
This pie chart compares the number of species in the classes of Chordata in Appendix I of CITES. There 
were seven Actinopterygii species, 24 Amphibia species, 164 Aves species, seven Elasmobranchii species, 
419 Mammalia species, 100 Reptilia species, and two Sarcopterygii species in CITES.  
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Figure 10: Comparison of the Number of Orders in the Classes of Chordata in Appendix I of CITES                                                 
This pie chart compares the number of orders in the classes of Chordata in Appendix I of CITES. There 
were six Actinopterygii orders, two Amphibia orders, 21 Aves orders, one Elasmobranchii order, 14 
Mammalia orders, five Reptilia orders, and one Sarcopterygii order in CITES.  
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Figure 11: Comparison of the Number of Species in the Orders of Mammalia in Appendix I of CITES                               
This pie chart compares the number of species in the orders of Mammalia listed in Appendix I of CITES. 
There were 58 Artiodactyla species, 48 Carnivora species, 32 Cetacea species, 11 Chiroptera species, one 
Cingulata species, two Dasyuromorphia species, eight Diprotodontia species, two Lagomorpha species, 
two Peramelemorphia species, 22 Perissodactyla species, 220 Primates, two Proboscidea species, seven 
Rodentia species, and four Sirenia species in CITES. 
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Figure 12: Comparison of the Number of Species in the Families of Primates in Appendix I of CITES                               
This pie chart compares the number of species in the families of Primates listed in Appendix I of CITES. 
There were eight Atelidae species,  13 Cebidae species, 35 Cercopithecidae species, 34 Cheirogaleidae 
species, one Daubentoniidae species, six Hominidae species, 31 Hylobatidae species, 24 Indriidae species, 
26 Lemuridae species, 26 Lepilemuridae species, eight Lorisidae species, and eight Pitheciidae  species 
listed in CITES. 
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Figure 13: Comparison of the Number of Species in Animalia and Plantae in Appendix II of CITES                                                 
This pie chart compares the number of Animalia and Plantae species listed in Appendix II of CITES. There 
were 5312 Animalia species and 29974 Plantae species listed in Appendix II.  
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Figure 14: Comparison of the Number of Orders in Animalia and Plantae in Appendix II of CITES                                                 
This pie chart compares the number of Animalia and Plantae orders listed in Appendix II of CITES. There 
were 62 Animalia orders and 29 Plantae orders in Appendix II.   
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Figure 15: Comparison of the Number of Species in the Phyla of Animalia in Appendix II of CITES                                                 
This pie chart compares the number of species in the phyla of Animalia in Appendix II of CITES. There 
were two Annelida species, 81 Arthropoda species, 3109 Chordata species, 2104 Cnidaria species, and 16 
Mollusca species listed in Appendix II.  
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Figure 16: Comparison of the Number of Orders in the Phyla of Animalia in Appendix II of CITES                                                 
This pie chart compares the number of species in the phyla of Animalia in Appendix II of CITES. There 
were four Arthropoda orders, one Annelida order, 46 Chordata orders, six Cnidaria orders, and five 
Mollusca orders in Appendix II. 
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Figure 17: Comparison of the Number of Species in the Classes of Chordata in Appendix II of CITES                                                 
This pie chart compares the number of species in the classes of Chordata in Appendix II of CITES. There 
were 83 Actinopterygii species, 142 Amphibia species, 1444 Aves species, ten Elasmobranchii species, 
713 Mammalia species, 716 Reptilia species, and one Sarcopterygii species in Appendix II.  
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Figure 18: Comparison of the Number of Orders in the Classes of Chordata in Appendix II of CITES                                                 
This pie chart compares the number of orders in the classes of Chordata in Appendix II of CITES. There 
were six Actinopterygii orders, two Amphibia orders, 15 Aves orders, four Elasmobranchii orders, 14 
Mammalia orders, four Reptilia orders, and one Sarcopterygii order in Appendix II.  
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Figure 19: Comparison of the Number of Species in the Orders of Mammalia in Appendix II of CITES                               
This pie chart compares the number of species in the orders of Mammalia listed in Appendix II of CITES. 
There were 31 Artiodactyla species, 95 Carnivora species, 62 Cetacea species, 59 Chiroptera species, one 
Cingulata species, eight Diprotodontia species, five Perissodactyla species, eight Pholidota, three Pilosa, 
413 Primates, one Proboscidea species, four Rodentia species, and 20 Scandentia species in Appendix II.  
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Figure 20: Comparison of the Number of Species in Animalia and Plantae in Appendix III of CITES                                                 
This pie chart compares the number of Animalia and Plantae species listed in Appendix III of CITES. There 
were 159 Animalia species and 15 Plantae species listed in Appendix II. 
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Figure 21: Comparison of the Number of Orders in Animalia and Plantae in Appendix III of CITES                                                 
This pie chart compares the number of Animalia and Plantae orders in Appendix III of CITES. There were 
22 Animalia orders and 9 Plantae orders in Appendix II. 
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Figure 22: Comparison of the Number of Species in the Phyla of Animalia in Appendix III of CITES                                                 
This pie chart compares the number of species in the phyla of Animalia in Appendix III of CITES. There 
were 20 Arthropoda species, 134 Chordata species, 4 Cnidaria species, and one Echinodermata species 
listed in Appendix III.  
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Figure 23: Comparison of the Number of Orders in the Phyla of Animalia in Appendix III of CITES                                                 
This pie chart compares the number of orders in the phyla of Animalia in Appendix III of CITES. There 
were two Arthropoda orders, 18 Chordata orders, one Cnidaria order, and one Echinodermata order in 
Appendix III. 
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Figure 24: Comparison of the Number of Species in the Classes of Chordata in Appendix III of CITES                                                 
This pie chart compares the number of species in the classes of Chordata in Appendix III of CITES. There 
were three Amphibia species, 28 Aves species, 63 Mammalia species, and 40 Reptilia species in Appendix 
III.  
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Figure 25: Comparison of the Number of Orders in the Classes of Chordata in Appendix III of CITES                                                 
This pie chart compares the number of orders in the classes of Chordata in Appendix III of CITES. There 
were two Amphibia orders, seven Aves orders, six Mammalia orders, and three Reptilia orders in 
Appendix III.  
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Appendix A: Tables 
 

Chi Square Test for Independence for the Appendix of CITES a Species was listed in and 
the Species' Taxonomic Classification 

 Kingdom Phylum Class Order 

Chi Squared Value 2926.34 993.59 2193.42 328.89 

Degrees of Freedom 1 5 6 17 

P-value p<0.0001 p<0.0001 p<0.0001 p<0.0001 

Table 1: Chi Square Test for Independence for the Appendix of CITES a Species was listed in and the 
Species' Taxonomic Classification       

This table shows the results of the chi square test for independence. As the table shows, there was an 

association between the kingdom, phylum, class, and order a species belonged to and the appendix of 

CITES the species was listed in.  
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The Observed and Expected Number of Species in Animalia and Plantae in Appendix I, Appendix II, 
and Appendix III of CITES for the Chi Square Goodness of Fit Test 

Kingdom Appendix I Appendix II Appendix III 

 
Observed 
Number 

of Species  

Expected 
Number of 

Species  

Observed 
Number of 

Species  

Expected 
Number of 

Species  

Observed 
Number of 

Species  

Expected 
Number of 

Species  

Animalia 791 578.5 5312 17643 159 87 

Plantae 366 578.5 29974 17643 15 87 

Table 2: The Observed and Expected Number of Species in Animalia and Plantae in Appendix I, Appendix 
II, and Appendix III of CITES for the Chi Square Goodness of Fit Test 

This table shows the observed and expected number of species in Animalia and Plantae in the three 

appendices of CITES. The expected number of species is the number of species expected if each kingdom 

was represented equally in CITES.   
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Chi Square Goodness of Fit Test for the Number of Species in 
Animalia and Plantae in Appendix I, Appendix II, and Appendix III 

of CITES 

 Appendix I Appendix II Appendix III 

Chi Squared 
Value 

156.11 17236.70 119.17 

Degrees of 
Freedom 

1 1 1 

P-value p<0.0001 p<0.0001 p<0.0001 

Table 3: Chi Square Goodness of Fit Test for the Number of Species in Animalia and Plantae in Appendix I, 
Appendix II, and Appendix III of CITES 

This table shows the results of the chi square goodness of fit test. As the table shows, the kingdoms of 

Animalia and Plantae were not represented equally in the three appendices of CITES.  
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The Observed and Expected Number of Species in Animalia and Plantae in Appendix I, Appendix II, and 
Appendix III of CITES for the Chi Square Homogeneity of Proportions Test 

Kingdom Appendix I Appendix II Appendix III 

  
Observed 

Number of 
Species  

Expected 
Number of 

Species  

Observed 
Number of 

Species  

Expected 
Number of 

Species  

Observed 
Number of 

Species  

Expected 
Number of 

Species  

Animalia 791 198 5312 6034 159 30 

Plantae 366 959 29974 29252 15 144 

Table 4: The Observed and Expected Number of Species in Animalia and Plantae in Appendix I, Appendix 
II, and Appendix III of CITES for the Chi Square Homogeneity of Proportions Test 

This table shows the observed and expected numbers of species in Animalia and Plantae in the three 

appendices of CITES. The expected number of species is the number of species expected if the number 

of species in each kingdom within one appendix was proportional to the total number of species in each 

kingdom in all of CITES and the size of one appendix.  
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Chi Square Homogeneity of Proportions Test for the Number of 
Species in Animalia and Plantae in Appendix I, Appendix II, and 

Appendix III of CITES 

 Appendix I Appendix II Appendix III 

Chi Squared 
Value 

2144.86 104.32 677.16 

Degrees of 
Freedom 

1 1 1 

P-value p<0.0001 p<0.0001 p<0.0001 

Table 5: Chi Square Homogeneity of Proportions Test for the Number of Species in Animalia and Plantae 
in Appendix I, Appendix II, and Appendix III of CITES 

This table shows the results of the chi square homogeneity of proportions test. As the table shows, the 

numbers of Animalia and Plantae species were not proportional to their representation in all of CITES 

and the size of each appendix.  
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The Observed and Expected Number of Orders in Animalia and Plantae in Appendix I, Appendix II, and 
Appendix III of CITES for the Chi Square Goodness of Fit Test 

Kingdom Appendix I Appendix II Appendix III 

 
Observed 
Number 

of Orders  

Expected 
Number of 

Orders  

Observed 
Number of 

Orders  

Expected 
Number of 

Orders  

Observed 
Number of 

Orders  

Expected 
Number of 

Orders  

Animalia 52 32.5 62 45.5 22 15.5 

Plantae 13 32.5 29 45.5 9 15.5 

Table 6: The Observed and Expected Number of Orders in Animalia and Plantae in Appendix I, Appendix 
II, and Appendix III of CITES for the Chi Square Goodness of Fit Test 

This table shows the observed and expected numbers of orders in Animalia and Plantae in the three 

appendices of CITES. The expected number of orders is the number of orders expected if each kingdom 

was equally diverse in CITES.   
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Chi Square Goodness of Fit Test for the Number of Orders in 
Animalia and Plantae in Appendix I, Appendix II, and Appendix III 

of CITES 

 Appendix I Appendix II Appendix III 

Chi Squared 
Value 

23.40 11.97 5.45 

Degrees of 
Freedom 

1 1 1 

P-value p<0.0001 p<0.001 p>0.001 

Table 7: Chi Square Goodness of Fit Test for the Number of Orders in Animalia and Plantae in Appendix I, 
Appendix II, and Appendix III of CITES 

This table shows the results of the chi square goodness of fit test. As the table shows, the kingdoms of 

Animalia and Plantae were not equally diverse in Appendix I and Appendix II.  

 

 

 

 

  



95 
 

The Observed and Expected Number of Orders in Animalia and Plantae in Appendix I, Appendix II, and 
Appendix III of CITES for the Chi Square Homogeneity of Proportions Test 

Kingdom Appendix I Appendix II Appendix III 

  
Observed 

Number of 
Orders 

Expected 
Number of 

Orders  

Observed 
Number of 

Orders 

Expected 
Number of 

Orders 

Observed 
Number of 

Orders 

Expected 
Number of 

Orders 

Animalia 52 47 62 66 22 23 

Plantae 13 18 29 25 9 8 

Table 8: The Observed and Expected Number of Orders in Animalia and Plantae in Appendix I, Appendix 
II, and Appendix III of CITES for the Chi Square Homogeneity of Proportions Test 

This table shows the observed and expected numbers of orders in Animalia and Plantae in the three 

appendices of CITES. The expected number of orders is the number of orders expected if the number of 

orders in each kingdom within an appendix was proportional to the total number of orders in each 

kingdom in all of CITES and the total number of orders within that appendix.  
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Chi Square Homogeneity of Proportions Test for the Number of 
Orders in Animalia and Plantae in Appendix I, Appendix II, and 

Appendix III of CITES 

 Appendix I Appendix II Appendix III 

Chi Squared 
Value 

1.73 0.97 0.05 

Degrees of 
Freedom 

1 1 1 

P-value p>0.001 p>0.001 p>0.001 

Table 9: Chi Square Homogeneity of Proportions Test for the Number of Orders in Animalia and Plantae 
in Appendix I, Appendix II, and Appendix III of CITES 

This table shows the results of the chi square homogeneity of proportions test. As the table shows, the 

numbers of Animalia and Plantae orders did not deviate significantly from the expected numbers of 

Animalia and Plantae orders.   
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The Observed and Expected Number of Species in the Phyla of Animalia 
in Appendix I of CITES for the Chi Square Goodness of Fit Test 

 Appendix I 

Phylum 
Observed Number of 

Species 
Expected Number of 

Species 

Arthropoda 3 263.67 

Chordata 723 263.67 

Mollusca 65 263.67 

Table 10: The Observed and Expected Number of Species in the Phyla of Animalia in Appendix I of CITES 
for the Chi Square Goodness of Fit Test 

This table shows the observed and expected numbers of species in the phyla of Animalia in Appendix I of 

CITES. The expected number of species is the number of species expected if each phylum was 

represented equally in CITES.   
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Chi Square Goodness of Fit Test for the Number of Species 
in  the Phyla of Animalia in Appendix I, Appendix II, and 

Appendix III of CITES 

  Appendix I Appendix II Appendix III 

Chi Squared 
Value 

1207.60 7959.38 303.21 

Degrees of 
Freedom 

2 4 3 

P-value p<0.0001 p<0.0001 p<0.0001 

Table 11: Chi Square Goodness of Fit Test for the Number of Species in the Phyla of Animalia in Appendix 
I, Appendix II, and Appendix III of CITES 

This table shows the results of the chi square goodness of fit test. As the table shows, the phyla of 

Animalia were not represented equally in the three appendices of CITES.  
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The Observed and Expected Number of Species in the Phyla of Animalia in Appendix I, Appendix II, 
and Appendix III of CITES for the Chi Square Homogeneity of Proportions Test 

Kingdom Appendix I Appendix II Appendix III 

  
Observed 
Number 

of Species  

Expected 
Number of 

Species  

Observed 
Number of 

Species  

Expected 
Number of 

Species  

Observed 
Number of 

Species  

Expected 
Number of 

Species  

Annelida, 
Arthropoda, 

Echinodermata, 
and Mollusca 

68 23.75 97 158.03 21 4.98 

Chordata 723 500.98 3109 3364.32 134 100.70 

Cnidaria 0 266.28 2104 1788.20 4 53.52 

Table 12: The Observed and Expected Number of Species in the Phyla of Animalia in Appendix I, Appendix 
II, and Appendix III of CITES for the Chi Square Homogeneity of Proportions Test 

This table shows the observed and expected number of species in the phyla of Animalia in the three 

appendices of CITES. The expected number of species is the number of species expected if the number 

of species in each phylum within an appendix was proportional to the total number of species in each 

phylum in all of CITES and the total number of species protected within that appendix.  
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Chi Square Homogeneity of Proportions Test for the 
Number of Species in the Phyla of Animalia in Appendix I, 

Appendix II, and Appendix III of CITES 

  Appendix I Appendix II Appendix III 

Chi Squared 
Value 

447.14 98.72 108.45 

Degrees of 
Freedom 

2 2 2 

P-value p<0.0001 p<0.0001 p<0.0001 

Table 13: Chi Square Homogeneity of Proportions Test for the Number of Species in the Phyla of Animalia 
in Appendix I, Appendix II, and Appendix III of CITES 

This table shows the results of the chi square homogeneity of proportions test. As the table shows, the 

number of species in the phyla of Animalia were not proportional to their representation in all of CITES 

and the size of each appendix.  
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The Observed and Expected Number of Orders in the Phyla 
of Animalia in Appendix I of CITES for the Chi Square 

Goodness of Fit Test 

Kingdom Appendix I 

 
Observed 

Number of 
Orders  

Expected 
Number of 

Orders  

Arthropoda 1 17.3 

Chordata 49 17.3 

Mollusca 2 17.3 

Table 14: The Observed and Expected Number of Orders in the Phyla of Animalia in Appendix I of CITES 
for the Chi Square Goodness of Fit Test 

This table shows the observed and expected numbers of orders in the phyla of Animalia in Appendix I of 

CITES. The expected number of orders is the number of orders expected if each phylum was equally 

diverse in CITES.   
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Chi Square Goodness of Fit Test for the Number of Orders in the 
Phyla of Animalia in Appendix I, Appendix II, and Appendix III of 

CITES 

  
Appendix I Appendix II Appendix III 

Chi Squared 
Value 

86.81 114.94 38.00 

Degrees of 
Freedom 

2 4 3 

P-value 
p<0.0001 p<0.001 P<0.001 

Table 15: Chi Square Goodness of Fit Test for the Number of Orders in the Phyla of Animalia in Appendix 
I, Appendix II, and Appendix III of CITES 

This table shows the results of the chi square goodness of fit test. As the table shows, the phyla of 

Animalia were not equally diverse in the three appendices of CITES.  
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The Observed and Expected Number of 

Species in the Classes of Chordata in 

Appendix I of CITES for the Chi Square 

Goodness of Fit Test 

 Appendix I 

Class 
Observed 

Number of 
Species 

Expected 
Number of 

Species 

Actinopterygii 7 103.29 

Amphibia 24 103.29 

Aves 164 103.29 

Elasmobranchii 7 103.29 

Mammalia 419 103.29 

Reptilia 100 103.29 

Sarcopterygii 2 103.29 

 
Table 16: The Observed and Expected Number of Species in the Classes in Chordata in Appendix I of CITES 
for the Chi Square Goodness of Fit Test 

This table shows the observed and expected number of species the Classes in Chordata in Appendix I of 

CITES. The expected number of species is the number of species expected if each class in Chordata was 

represented equally in Appendix I.   
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Chi Square Goodness of Fit Test for the Number of Species 
in the Classes of Chordata in Appendix I, Appendix II, and 

Appendix III of CITES 

  Appendix I 
Appendix 

II 
Appendix 

III 

Chi Squared 
Value 

1340.55 3945.75 55.91 

Degrees of 
Freedom 

6 6 3 

P-value p<0.0001 p<0.0001 p<0.0001 

Table 17: Chi Square Goodness of Fit Test for the Number of Species in the Classes of Chordata in 
Appendix I, Appendix II, and Appendix III of CITES 

This table shows the results of the chi square goodness of fit test. As the table shows, the classes of 

Chordata were not represented equally in the three appendices of CITES.  
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The Observed and Expected Number of Species in the Classes of Chordata in Appendix I, Appendix II, and 
Appendix III of CITES for the Chi Square Homogeneity of Proportions Test 

  Appendix I Appendix II Appendix III 

Class 

Observed 
Number of 
Species  

Expected 
Number of 
Species  

Observed 
Number of 
Species  

Expected 
Number of 
Species  

Observed 
Number of 
Species  

Expected 
Number of 
Species  

Actinopterygii, 
Elasmobranchii, 
and 
Sarcopterygii 16 20 18 30 0 17 

Amphibia 24 31 142 132 3 6 

Aves 164 298 1444 1282 28 55 

Mammalia 419 218 713 937 63 40 

Reptilia 100 156 716 671 40 29 

Table 18: The Observed and Expected Number of Species in the Classes of Chordata in Appendix I, 
Appendix II, and Appendix III of CITES for the Chi Square Homogeneity of Proportions Test 

This table shows the observed and expected numbers of species in the classes of Chordata in the three 

appendices of CITES. The expected number of species is the number of species expected if the number 

of species in each class within an appendix was proportional to the total number of species in each class 

in all of CITES and the total number of species protected within that appendix.  
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Chi Square Homogeneity of Proportions Test for the 
Number of Species in the Classes of Chordata in Appendix 

I, Appendix II, and Appendix III of CITES 

  Appendix I 
Appendix 

II 
Appendix 

III 

Chi Squared 
Value 

268.43 78.71 35.28 

Degrees of 
Freedom 

4 4 4 

P-value p<0.0001 p<0.0001 p<0.0001 

Table 19: Chi Square Homogeneity of Proportions Test for the Number of Species in the Classes of 
Chordata in Appendix I, Appendix II, and Appendix III of CITES 

This table shows the results of the chi square homogeneity of proportions test. As the table shows, the 

numbers of species in the classes of Chordata were not proportional to their representation in all of 

CITES and the size of each appendix.  

   



107 
 

The Observed and Expected Number of Orders in the 
Classes of Chordata in Appendix I of CITES for the Chi 

Square Goodness of Fit Test 

Kingdom Appendix I 

 

Observed 

Number of 

Orders 

Expected 
Number of 

Orders 

Actinopterygii 6 7.14 

Amphibia 2 7.14 

Aves 21 7.14 

Elasmobranchii 1 7.14 

Mammalia 14 7.14 

Reptilia 5 7.14 

Sarcopterygii 1 7.14 

Table 20: The Observed and Expected Number of Orders in the Classes of Chordata in Appendix I of CITES 
for the Chi Square Goodness of Fit Test 

This table shows the observed and expected numbers of orders in the classes of Chordata in Appendix I 

of CITES. The expected number of orders is the number of orders expected if each class was equally 

diverse in CITES.   
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Chi Square Goodness of Fit Test for the Number of 
Orders in the Classes of Chordata in Appendix I 

and Appendix II of CITES 

 Appendix I Appendix II 

Chi Squared 
Value 

48.56 34.16 

Degrees of 
Freedom 

6 6 

P-value p<0.0001 p<0.001 

Table 21: Chi Square Goodness of Fit Test for the Number of Orders in the Classes of Chordata in 
Appendix I and Appendix II of CITES 

This table shows the results of the chi square goodness of fit test. As the table shows, the classes of 

Chordata were not equally diverse in Appendix I and Appendix II of CITES.  
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The Observed and Expected Number of Species in the Orders of Mammalia 
in Appendix I of CITES for the Chi Square Goodness of Fit Test 

  Appendix I 

Order 
Observed Number of 

Species  
Expected Number of 

Species  

Artiodactyla 58 29.93 

Carnivora 48 29.93 

Cetacea 32 29.93 

Chiroptera 11 29.93 

Cingulata 1 29.93 

Dasyuromorphia 2 29.93 

Diprotodontia 8 29.93 

Lagomorpha 2 29.93 

Peramelemorphia 2 29.93 

Perissodactyla 22 29.93 

Primates 220 29.93 

Proboscidea 2 29.93 

Rodentia 7 29.93 

Sirenia 4 29.93 

Table 22: The Observed and Expected Number of Species in the Orders of Mammalia in Appendix I of 
CITES for the Chi Square Goodness of Fit Test 

This table shows the observed and expected number of species in the orders of Mammalia in Appendix I 

of CITES. The expected number of species is the number of species expected if each order was 

represented equally in CITES.   
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Chi Square Goodness of Fit Test for the Number of Species in the Orders of Mammalia in Appendix I, 
Appendix II, and Appendix III of CITES 

  Appendix I Appendix II Appendix III 

Chi Squared Value 1446.88 2987.65 96.14 

Degrees of 
Freedom 

13 13 5 

P-value p<0.0001 p<0.0001 p<0.0001 

Table 23: Chi Square Goodness of Fit Test for the Number of Species in the Orders of Mammalia in 
Appendix I, Appendix II, and Appendix III of CITES 

This table shows the results of the chi square goodness of fit test. As the table shows, the orders of 

Mammalia were not represented equally in the three appendices of CITES.  
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The Observed and Expected Number of Species in the Orders of Mammalia in Appendix I, Appendix II, 
and Appendix III of CITES for the Chi Square Homogeneity of Proportions Test 

  Appendix I Appendix II Appendix III 

Order 
Observed 

Number of 
Species  

Expected 
Number of 

Species  

Observed 
Number of 

Species  

Expected 
Number of 

Species  

Observed 
Number of 

Species  

Expected 
Number of 

Species  

Artiodactyla 58 35.76 31 60.86 13 5.38 

Carnivora, 
Chiroptera, 

Perissodactyla, 
and Pholidota   

81 100.63 167 171.24 39 15.13 

Cetacea 32 32.96 62 56.09 0 4.96 

Cingulata, Pilosa, 
Proboscidea, and 

Sirenia 
7 5.61 5 9.55 4 0.84 

Dasyuromorphia, 
Diprotodontia, 
Monotremata, 

and 
Peramelemorphia  

12 8.06 11 13.72 0 1.21 

Lagomorpha, 
Rodentia, and 

Scandentia 
9 14.03 24 23.87 7 2.11 

Primates 220 221.95 413 377.68 0 33.37 

Table 24: The Observed and Expected Number of Species in the Orders of Mammalia in Appendix I, 
Appendix II, and Appendix III of CITES for the Chi Square Homogeneity of Proportions Test 

This table shows the observed and expected number of species in the orders of Mammalia in the three 

appendices of CITES. The expected number of species is the number of species expected if the number 

of species in each order within an appendix was proportional to the total number of species in each 

order in all of CITES and the total number of species protected within that appendix.  
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Chi Square Homogeneity of Proportions Test for the Number of Species in  the Orders of Mammalia 
in Appendix I, Appendix II, and Appendix III of CITES 

  Appendix I Appendix II Appendix III 

Chi Squared Value 21.76 35.45 111.16 

Degrees of Freedom 6 6 6 

P-value p>0.001 p>0.001 p<0.0001 

Table 25: Chi Square Homogeneity of Proportions Test for the Number of Species in the Orders of 
Mammalia in Appendix I, Appendix II, and Appendix III of CITES 

This table shows the results of the chi square homogeneity of proportions test. As the table shows, the 

number of species in the orders of Mammalia did not deviate significantly from the expected numbers 

of species in Appendix I and Appendix II.  
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The Observed and Expected Number of 
Species in the Phyla of Animalia in 

Appendix II of CITES for the Chi Square 
Goodness of Fit Test 

 Appendix II 

Phylum 
Observed 

Number of 
Species 

Expected 
Number of 

Species 

Annelida 2 1062.40 

Arthropoda 81 1062.40 

Chordata 3109 1062.40 

Cnidaria 2104 1062.40 

Mollusca 16 1062.40 

Table 26: The Observed and Expected Number of Species in the Phyla of Animalia in Appendix II of CITES 
for the Chi Square Goodness of Fit Test  

This table shows the observed and expected numbers of species in the phyla of Animalia in Appendix II 

of CITES. The expected number of species is the number of species expected if each phylum was 

represented equally in Appendix II.   
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The Observed and Expected Number of Orders in the Phyla 
of Animalia in Appendix II of CITES for the Chi Square 

Goodness of Fit Test 

Kingdom Appendix II 

 
Observed 

Number of 
Orders  

Expected 
Number of 

Orders  

Annelida 1 12.4 

Arthropoda 4 12.4 

Chordata 46 12.4 

Cnidaria 6 12.4 

Mollusca 5 12.4 

Table 27: The Observed and Expected Number of Orders in the Phyla of Animalia in Appendix II of CITES 
for the Chi Square Goodness of Fit Test 

This table shows the observed and expected numbers of orders in the phyla of Animalia in Appendix II of 

CITES. The expected number of orders is the number of orders expected if each phylum was equally 

diverse in Appendix II.   
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The Observed and Expected Number of 
Species in the Classes of Chordata in 

Appendix II of CITES for the Chi Square 
Goodness of Fit Test 

 Appendix II 

Class 
Observed 

Number of 
Species 

Expected 
Number of 

Species 

Actinopterygii 83 444.14 

Amphibia 142 444.14 

Aves 1444 444.14 

Elasmobranchii 10 444.14 

Mammalia 713 444.14 

Reptilia 716 444.14 

Sarcopterygii 1 444.14 

Table 28: The Observed and Expected Number of Species in the Classes of Chordata in Appendix II of 
CITES for the Chi Square Goodness of Fit Test 

This table shows the observed and expected numbers of species in the classes of Chordata in Appendix II 

of CITES. The expected number of species is the number of species expected if each class was 

represented equally in CITES.   
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The Observed and Expected Number of Orders in the 
Classes of Chordata in Appendix II of CITES for the Chi 

Square Goodness of Fit Test 

Kingdom Appendix II 

 

Observed 

Number of 

Orders 

Expected 
Number of 

Orders 

Actinopterygii 6 5.75 

Amphibia 2 5.75 

Aves 15 5.75 

Elasmobranchii 4 5.75 

Mammalia 14 5.75 

Reptilia 4 5.75 

Sarcopterygii 1 5.75 

Table 29: The Observed and Expected Number of Orders in the Classes of Chordata in Appendix I of CITES 
for the Chi Square Goodness of Fit Test 

This table shows the observed and expected number of orders in the classes of Chordata in Appendix II 

of CITES. The expected number of orders is the number of orders expected if each class was equally 

diverse in CITES.   
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The Observed and Expected Number of 
Species in the Orders in Mammalia in Appendix 

II of CITES for the Chi Square Goodness of Fit 
Test 

  Appendix II 

Order 
Observed 

Number of 
Species  

Expected 
Number of 

Species  

Artiodactyla 31 50.93 

Carnivora 95 50.93 

Cetacea 62 50.93 

Chiroptera 59 50.93 

Cingulata 1 50.93 

Diprotodontia 8 50.93 

Monotremata 3 50.93 

Perissodactyla 5 50.93 

Pholidota 8 50.93 

Pilosa 3 50.93 

Primates 413 50.93 

Proboscidea 1 50.93 

Rodentia 4 50.93 

Scandentia 20 50.93 

Table 30: The Observed and Expected Number of Species in the Orders in Mammalia in Appendix II of 
CITES for the Chi Square Goodness of Fit Test 

This table shows the observed and expected numbers of species in the orders of Mammalia in Appendix 

II of CITES. The expected number of species is the number of species expected if each order was 

represented equally in CITES.   
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The Observed and Expected Number of 
Species in the Phyla of Animalia 

Appendix III of CITES for the Chi Square 
Goodness of Fit Test 

 Appendix III 

Phylum 
Observed 

Number of 
Species 

Expected 
Number of 

Species 

Arthropoda 20 39.75 

Chordata 134 39.75 

Cnidaria 4 39.75 

Mollusca 1 39.75 

Table 31: The Observed and Expected Number of Species in the Phyla of Animalia Appendix III of CITES 
for the Chi Square Goodness of Fit Test 

This table shows the observed and expected number of species in the phyla of Animalia in Appendix III 

of CITES. The expected number of species is the number of species expected if each phylum was 

represented equally in Appendix III.   
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The Observed and Expected Number of Orders in the Phyla 
of Animalia in Appendix III of CITES for the Chi Square 

Goodness of Fit Test 

Kingdom Appendix III 

 
Observed 

Number of 
Orders  

Expected 
Number of 

Orders  

Arthropoda 2 5.5 

Chordata 18 5.5 

Cnidaria 1 5.5 

Echinodermata 1 5.5 

Table 32: The Observed and Expected Number of Orders in the Phyla of Animalia in Appendix III of CITES 
for the Chi Square Goodness of Fit Test 

This table shows the observed and expected number of orders in in the phyla of Animalia in Appendix III 

of CITES. The expected number of orders is the number of orders expected if each phylum was equally 

diverse in Appendix III.   
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The Observed and Expected Number of 
Species in the Classes of Chordata in 

Appendix III of CITES for the Chi Square 
Goodness of Fit Test 

 Appendix III 

Class 
Observed 
Number 

of Species 

Expected 
Number of 

Species 

Amphibia 3 33.50 

Aves 28 33.50 

Mammalia 63 33.50 

Reptilia 40 33.50 

Table 33: The Observed and Expected Number of Species in the Classes of Chordata in Appendix III of 
CITES for the Chi Square Goodness of Fit Test 

This table shows the observed and expected number of species in the classes of Chordata in Appendix III 

of CITES. The expected number of species is the number of species expected if each class was 

represented equally in Appendix III.   
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Appendix B: Bibliography for CITES Contents 

Below are the resources used to ascertain the correct number of species and subspecies listed in CITES. 

The Excel documents listing the number of species and subspecies used to assess the validity of the 

hypothesis can be accessed by contacting the author: Laura Jenkins at lejenk01@syr.edu. This email 

should be active at least until May 2018. 
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