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Table 3. Watershed characteristics of nine study watersheds (* denotes watershed selected for i-
Tree Hydro model run) 
Watershed Area (mi2) USGS Gauge Number Impervious Fraction 
Baisman Run* 1.47 1583580 0.037 
Cranberry Branch 3.29 1585500 0.112 
Upper Gwynn’s Falls* 4.23 1589197 0.281 
Minebank Run 2.06 158397967 0.299 
Herring Run* 2.13 1585200 0.321 
Whitemarsh Run 2.73 1585090 0.376 
Moores Run 3.52 1585230 0.398 
Herbert Run* 2.47 1589100 0.451 
Dead Run* 5.52 1589330 0.522 
 
 

 
Figure 3. Modeled watersheds with NLCD 2011 data 
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3.3 Methodology 

3.3.1 Runoff Ratios 
 To construct the average monthly runoff ratios for each of the nine watersheds, daily 
average streamflows were obtained from the USGS National Water Information System (NWIS) 
for each watershed for the timespan January 1st, 2000 to December 31st, 2009. Precipitation data 
was provided by Dr. Brianne Smith from the Earth and Environmental Sciences Department at 
Brooklyn College (Smith et al., 2013) in the form of 15-minute, bias-correct NEXRAD data, 
averaged across the watershed for each of the nine watersheds.  Calculating monthly runoff 
ratios makes an implicit assumption of little change in storage in the watershed over a month, 
which generally is not valid given season groundwater, surface water and soil moisture storage 
variations. This can produce unusual results, especially in months with little precipitation. 
Regardless, for this initial analysis, monthly runoff ratios were calculated using recorded 
precipitation and streamflow during the month.   

This data was processed using R statistical software. Any missing data points at the 15-
minute timestep were assumed to be zero precipitation, and thus were disregarded when the data 
was aggregated to an hourly timestep. This hourly data was then compared to the hourly 
precipitation data from the NCDC weather station at BWI Airport, which is located 
approximately 5 miles south of the City of Baltimore. For hours where there was no NEXRAD 
data, the hourly precipitation at BWI Airport was used.  

The impetus behind using the NEXRAD precipitation data was that it would provide a 
more local and hopefully more accurate precipitation dataset than the BWI airport data for use in 
calculating the runoff ratios and the i-Tree Hydro model runs. However, anomalous data points 
within the NEXRAD data led to questions regarding the accuracy of this data.  

Figure 2 below shows the relationship between the NEXRAD precipitation data and the 
BWI precipitation data at the at the Herbert Run watershed for both hourly and daily 
precipitation data.  Herbert Run is the nearest of the five watersheds to BWI Airport, so it was 
expected that these datasets would show the strongest correlation. However, at an hourly level, 
there is very little relationship between this data, though at a daily level, there is a stronger 
relationship.  
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 Figure 4. NEXRAD precipitation in the Herbert Run watershed compared with that at BWI Airport, at an hourly and 
daily timestep. Herbert Run is the nearest watershed to the BWI station and should be best represented by that data. 

 
Monthly average runoff ratios were then calculated for total precipitation (depth) and 

stream discharge normalized by drainage area (depth) for the timespan January 2000 through 
December 2009.  Due to uncertainty regarding the NEXRAD data, runoff ratios were calculated 
using this adjusted NEXRAD data (Figure 6 below and Table 5) and with the BWI Airport data 
(Figure 7 below and Table 6 in appendix).  Note that the i-Tree Hydro model is most commonly 
run using data from the nearest NWS meteorological station, which in this case would be BWI 
Airport for all of these watersheds. 

3.3.2 Land Cover Classification 
Land cover classifications for the nine watersheds were completed by Charity Nyelele, a 

PhD student at SUNY ESF who is involved with the NUCFAC project. Watersheds were 
delineated using USGS StreamStats. Tree, short vegetation, bare soil, water and impervious 
cover percentages were obtained from a 3.2ft Urban Tree Canopy (UTC) land cover dataset 
obtained from the USDA Forest Service’s UTC assessment (O’Neil-Dunne, 2018). Directly 
Connected Impervious Area (DCIA), an input to i-Tree Hydro, was calculated using the 
Sutherland equation within i-Tree Hydro (Sutherland, 2000). 

For the fraction of trees over pervious area, fraction of trees over impervious area, 
fraction of short vegetation in the catchment, fraction of bare soil, fraction of evergreen trees and 
fraction of evergreen shrub (short vegetation), the original values based on image classification 
and the National Land Cover Database data were used and adjusted proportionally based on the 
land cover percentages in each watershed. The results of these classifications can be seen below 
in Table 4 for the five subwatersheds at which we will run i-Tree Hydro.  Figure 5 contains plots 
of the overall runoff ratios for the entire 10-year time period versus fraction of tree cover and 
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fraction of impervious surface.  As expected, there is a general pattern where runoff ratios 
decrease with increasing tree cover and increase with increasing impervious surface.  The one 
usual data point is for Upper Gwynn’s Falls, which has the largest fraction of short vegetation, 
which would generally decrease runoff ratios. 

 
Table 3. Land cover fractions for five target watersheds 

Land Cover Type Baisman Run Upper Gwynn’s 
Falls Herring Run Herbert Run Dead Run 

Trees 0.799 0.418 0.437 0.328 0.277 
Short Vegetation 0.163 0.300 0.237 0.213 0.197 
Impervious Cover 0.037 0.281 0.321 0.451 0.522 
Water 0.000 0.000 0.002 0.004 0.002 
Bare Soil 0.000 0.001 0.002 0.004 0.001 
Tree over 
Impervious 0.073 0.038 0.040 0.030 0.025 

Tree over pervious 0.725 0.380 0.397 0.298 0.252 
Evergreen Tree 0.000 0.015 0.024 0.043 0.000 
Evergreen Shrub 0.005 0.009 0.000 0.000 0.001 
 

 
Figure 5. Total runoff ratios for five target watersheds as a function of tree cover and impervious cover 
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3.3.3 i-Tree Hydro Methodology 
i-Tree Hydro Version 6 was used for all model runs for the BES portion of this project. 

An older version of i-Tree Hydro was applied to one of our Baltimore study sites (Dead Run) for 
a for three short storm events in 2000 (Wang, Endreny & Nowak, 2008).  To use the adjusted 
NEXRAD precipitation data for running i-Tree Hydro, a raw weather file of hourly data at BWI 
Airport was first downloaded from the National Climate Data Center. After R preprocessing to 
remove repeated data points, this file was processed using the built-in weather processor in i-
Tree Hydro. The processed weather file was then downloaded, and the adjusted NEXRAD 
precipitation data for each of the five study watersheds was used to replace the existing 
precipitation data within the weather file. To run i-Tree Hydro with the BWI Airport 
precipitation data, the original raw weather file from BWI was used. Streamflow data was 
downloaded from the USGS NWIS at a 15-minute timestep for each watershed. Topographical 
Index (TI) files, which indicate the propensity for surface saturation across the landscape and are 
an i-Tree Hydro input, were created using the i-Tree Hydro GUI for each watershed.  

The model was calibrated for each watershed over the timespan of January 1st, 2007 to 
December 30th, 2009. As in the Bronx, the model was calibrated to maximize the real space 
NSE of the weekly streamflows.  Using the parameters obtained from this calibration, the model 
was then run over the full time span of January 1st, 2000 to December 30th, 2009. This process 
was completed for each of the five study watersheds. Extended outputs from the model runs were 
stored for further analysis.  

3.4 Results 

3.4.1 Runoff Ratios 
 Figure 6 below shows the monthly average runoff ratios, calculated using the USGS 
streamflow measurements for each watershed and the adjusted NEXRAD precipitation data. 
These runoff ratios were calculated using the BWI Airport precipitation data as well (Figure 7). 
These results demonstrate the same general trends as the runoff ratios calculated using the 
NEXRAD data. There were two main takeaways from these results.  
 First, both of these datasets exhibit a strong seasonal variation in runoff ratios as is 
expected, where runoff ratios peak in the winter and early spring months, when 
evapotranspiration (ET) is low, and reach their lowest point in the late summer when ET is at its 
peak. This matches previous expectations for seasonal effects on runoff ratios.  
 Second, the comparison of runoff ratios between the watersheds for the most part 
matches expectations. There are high runoff ratios across the watersheds in the winter months, 
when ET is at its nadir. During the summer months, the most forested watersheds — Baisman 
Run and Upper Gwynn’s Falls — have the lowest runoff ratios and therefore the highest 
expected ET. Contrary to this, the most urbanized watersheds — Dead Run and Herbert Run — 
have the highest runoff ratios. It is unclear why Baisman Run has the highest runoff ratio in 
February and March; this may be due to snow melt within this watershed. 

The lower runoff ratios of Baisman Run and Upper Gwynn’s Falls during the summer 
months are also important given these months experience the greatest frequency of 
thunderstorms and other heavy precipitation events. Having adequate forest cover within a 
watershed may be an important factor in decreasing flood risk during these high-intensity, short-
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duration storm events. The runoff ratios are also closer together during the winter months, when 
precipitation events are likely to be larger frontal systems rather than the smaller thunderstorms 
of the summer.  

One outlier removed from the BWI Airport data was the runoff ratio of each watershed in 
October of 2000. This month had monthly runoff ratios of 2.5 at Dead Run to 7.1 at Baisman 
Run. This is due to only 2 mm of precipitation being measured at the BWI Airport station over 
the month, while streamflow values were not equally low. This is the major limitation of 
calculating runoff ratios at a monthly time step which ignores watershed storage.  During low 
precipitation months, one would expect reduction in groundwater storage as this storage 
continues to supply water to the stream.  This removed data point is reflected in Figure 7 and 
Table 6 (in Appendix).   

 

 
Figure 6. Average monthly runoff ratios (2000-2009) using observed streamflow and adjusted NEXRAD precipitation 
data 
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Figure 7. Average monthly runoff ratios (2000-2009) using observed streamflow and BWI Airport precipitation 

3.4.2 i-Tree Hydro Output 
The NSE from i-Tree Hydro prediction of weekly streamflows over the calibration period 

(January 2007 to December 2009) ranged from -0.21 at Baisman Run to 0.46 at Dead Run, and 
over the validation period (January 2000 to December 2006) the NSE ranged from -0.11 at 
Baisman Run to 0.43 at Dead Run. The full results for NSE using both the BWI Airport and 
NEXRAD precipitation can be seen below in   
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Table 4. These values are from i-Tree Hydro runs using both the NEXRAD and the BWI Airport precipitation data. 
From this data, it is clear that i-Tree Hydro is more effectively modeling the hydrologic cycle in the most-urbanized 
watersheds such as Dead Run, while less effectively modeling the most-forested watersheds (Baisman Run, Upper 
Gwynn’s Falls).  Unexpectedly, some of the NSE values are higher for the validation period than the calibration 
period, though in general these values are similar. Also, both Herbert Run and Herring run showed lower NSE values 
with NEXRAD precipitation than with the BWI precipitation for the validation period. Figure 12. Monthly predicted and 
observed runoff for Dead Run watershed for calibration period (January 2007 - December 2009) 

 

 

Table 9 in the appendix shows the parameter set after calibration for each of the five 
target watersheds. Even at Dead Run , where the model calibration and validation produced the 
highest NSE, the model generally underestimates ET in the late summer and early fall (see 
Figure 12 of appendix). This result suggests that the ET dynamics of this model should be more 
thoroughly investigated. 
 
  



 18 

Table 4. Weekly Nash Sutcliffe Efficiency during Calibration and Validation phase using BWI Airport data 

Model Period Baisman Run Upper Gwynn 
Falls 

Herring 
Run 

Herbert 
Run 

Dead 
Run 

BWI Calibration -0.211 0.026 0.317 -0.182 0.466 
BWI Validation -0.107 0.093 0.265 0.308 0.425 
NEXRAD 
Calibration 0.329 0.478 0.350 -0.158 0.622 

NEXRAD 
Validation -0.002 0.21 -0.34 0.213 0.500 

 
 Figure 8 and Figure 9 below show the average monthly runoff ratios calculated using i-

Tree Hydro modeled streamflows with the adjusted NEXRAD precipitation data and the BWI 
data, respectively. The most apparent feature of Figure 7 is the extreme scale and variation in 
runoff ratios modeled for the Baisman Run watershed as compared to the others. This is the 
result of the model significantly over-predicting the transmissivity at saturation of the soils 
within this watershed by a factor of 1100 times as compared to that value for the BWI Airport 
precipitation model runs. This most likely is an issue with the model calibration.  For all models, 
the calibration routine started at default parameter values and was allowed to calibrate 
automatically to maximize the real-space NSE of weekly streamflows. Further exploration of the 
calibration routine and the solution space is warranted, as this routine may have identified a local 
as opposed to a global optimal solution.  This also could be the result of the model being 
developed for use on urban watersheds, rather than the 80% forest cover of Baisman Run. 
Furthermore, i-Tree Hydro does not calibrate LAI as part of the calibration routine, including it 
instead as a user input. LAI is used to calculate stomatal resistance in the modified Penman-
Monteith equation (Shuttleworth, 2013) which is used to calculate potential ET from trees 
(Hirabayashi & Endreny, 2016).  Because LAI has a direct effect on ET rates, the model’s 
inability to adjust this metric may be a factor in the lack of seasonal effects of ET in the model 
output. Because of Dead Run’s low fraction of tree cover, it may experience the smallest effects 
from this lack of LAI calibration.  In addition, ET from trees is calculated from the potential ET 
as a linear function of available soil moisture (Wang, Endreny & Nowak, 2008).  This simple 
approach may not capture ET dynamics in an urban catchment. 

Despite this, it can be seen that the effect of urbanization and impervious surfaces is 
being represented in the model to some degree, as both figures show greater runoff ratios in 
Dead Run and Herbert Run, and the lowest in Herring Run and Upper Gwynn’s Falls.  

However, these model outputs do not show the same seasonal variation in runoff ratios as 
the measured values in Figure 6 and Figure 7 above. This may indicate that i-Tree Hydro is not 
adequately taking in to account the effect of season variation in ET patterns across watersheds of 
different levels of forest cover. Figure 10 below shows the relationship between measured runoff 
ratios and i-Tree Hydro modeled runoff ratios for each watershed. Rather than following the 45° 
line that would show a direct correlation between the observed and predicted runoff ratios, there 
seems to be little in the way of a relationship between the two series.  
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Figure 8. Average monthly runoff ratios (2000-2009) using i-Tree Hydro streamflow predictions and adjusted 
NEXRAD precipitation data 

 
Figure 9. Average monthly runoff ratios (2000-2009) using i-Tre Hydro streamflow predictions and MET station 
precipitation data 
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Figure 10. Runoff ratio comparison for modeled and measured runoff using BWI precipitation data  

4.0 Conclusions 
The greatest conclusion that can be drawn from this study is the necessity of accurate 

precipitation data for hydrologic modeling. The selection of the Baltimore Ecosystem Study as a 
second research area was made with the intent of securing data with a higher degree of resolution 
and accuracy, although doubts regarding this dataset led to use of the BWI Airport precipitation 
measurements to fill gaps and replace unusual observations. However, using both of these 
datasets, some conclusions can be made regarding both the effect of urbanization on runoff ratios 
and ET, and the ability of i-Tree Hydro to accurately model aspects of the hydrologic cycle.  

Based on the difference seen between the most- and least-forested watersheds during the 
summer months using the measured streamflow and BWI Airport precipitation data, the 
hypothesis that ET rates — and the presence of trees driving that ET — can have a meaningful 
impact on stormwater runoff is supported. Future researchers could use a longer record of 
precipitation and streamflows to further identify the drivers of seasonal changes in runoff in 
small urban watersheds, as the 10-year record used in this study may not be large enough to 
represent the wide array of possible weather conditions.  

In terms of answering the questions spurred on by the Bronx River watershed portion of 
the study, questions regarding the accuracy of input data, model calibration, and the modeling of 
hydrologic processes remained an issue. The results do provide partial answers to the questions 
regarding the ability of i-Tree Hydro to calibrate and accurately model flow series.  
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Observing the relative flow series predicted by i-Tree Hydro, land cover differences seem 
to overall be represented. However, seasonal variations in ET do not seem to be well represented 
for the calibrated model at these watersheds. This may be the result of i-Tree Hydro being 
focused on urban watersheds; the model may not adequately represent ET fluxes at forested 
watersheds such as Baisman Run. This is supported by the higher NSE values for the urbanized 
watersheds than for the forested ones. The overestimation of streamflows within Baisman Run 
using the model also introduced further questions regarding the model calibration routine, 
particularly because these same extremes were not present in the model using the BWI Airport 
precipitation.  

Further steps could be taken to isolate the seasonal effects of ET within the i-Tree Hydro 
model, possibly by manually producing a precipitation and streamflow dataset that emphasizes 
the seasonal variation in runoff ratios, and seeing if the model is able to accurately represent this. 
Another option would be to identify two watersheds of similar land cover fractions, one in a 
region with significant seasonal ET variation (i.e. the Northeast U.S.) and one in a region with 
less variation (i.e. near the Equator), and use both watersheds to run the model. The two resulting 
outputs would be useful for isolating the seasonal ET variations within the model. 

Overall, this study supports the hypothesis that ET can play a major role in the hydrologic 
cycle in urban watersheds, and urban trees can help to mitigate streamflow from precipitation 
events especially during the summer months.  
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Appendix 
Table 5. Average monthly runoff ratios (2000-2009) using observed streamflow and adjusted NEXRAD precipitation 
data 

Month Baisman Run Upper Gwynn’s Falls Herring Run Herbert Run Dead Run 
January 0.49 0.54 0.56 0.52 0.50 
February 0.86 0.72 0.74 0.77 0.74 
March 0.60 0.60 0.56 0.50 0.56 
April 0.43 0.53 0.48 0.41 0.38 
May 0.47 0.39 0.34 0.40 0.31 
June 0.33 0.46 0.39 0.30 0.31 
July 0.26 0.40 0.35 0.29 0.26 
August 0.24 0.31 0.31 0.26 0.26 
September 0.23 0.33 0.31 0.30 0.28 
October 0.38 0.39 0.39 0.35 0.42 
November 0.29 0.49 0.43 0.38 0.41 
December 0.36 0.65 0.52 0.47 0.47 

 
Table 6. Average monthly runoff ratios (2000-2009) using observed streamflow and MET station precipitation data 

Month Baisman Run 
Upper Gwynn’s 
Falls Herring Run Herbert Run Dead Run 

January 0.50 0.49 0.51 0.52 0.51 
February 0.95 0.85 0.81 0.77 0.77 
March 1.01 0.92 0.79 0.72 0.77 
April 0.54 0.45 0.49 0.54 0.61 
May 0.49 0.34 0.37 0.40 0.44 
June 0.29 0.31 0.36 0.38 0.46 
July 0.21 0.21 0.34 0.34 0.36 
August 0.19 0.27 0.32 0.29 0.35 
September 0.25 0.40 0.37 0.44 0.46 
October 0.25 0.40 0.38 0.42 0.48 
November 0.29 0.42 0.43 0.47 0.56 
December 0.38 0.50 0.52 0.51 0.68 
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Table 7. Average monthly runoff ratios (2000-2009) using i-Tree Hydro streamflow predictions and adjusted NEXRAD 
precipitation data 

Month Baisman Run Upper Gwynn Falls Herring Run Herbert Run Dead Run 
January 0.97 0.55 0.40 0.32 0.48 

February 1.59 0.66 0.43 0.33 0.52 

March 1.10 0.59 0.45 0.36 0.49 

April 0.47 0.59 0.51 0.44 0.51 

May 0.77 0.55 0.48 0.33 0.48 

June 0.65 0.58 0.53 0.41 0.50 

July 0.79 0.54 0.48 0.41 0.41 

August 1.02 0.55 0.42 0.44 0.45 

September 1.16 0.54 0.47 0.38 0.46 

October 1.02 0.61 0.46 0.45 0.57 

November 0.76 0.62 0.51 0.44 0.53 

December 0.63 0.66 0.57 0.49 0.59 

 
Table 8. Average monthly runoff ratios (2000-2009) using i-Tree Hydro streamflow predictions and MET station 
Precipitation data 

Month Baisman Run Upper Gwynn’s Falls Herring Run Herbert Run Dead Run 
January 0.23 0.36 0.35 0.39 0.46 
February 0.20 0.32 0.33 0.44 0.47 
March 0.21 0.35 0.35 0.41 0.48 
April 0.26 0.42 0.40 0.43 0.54 
May 0.28 0.43 0.45 0.48 0.56 
June 0.34 0.47 0.47 0.51 0.59 
July 0.36 0.46 0.47 0.54 0.58 
August 0.28 0.41 0.41 0.49 0.52 
September 0.32 0.47 0.47 0.49 0.59 
October 0.32 0.46 0.46 0.46 0.57 
November 0.29 0.44 0.43 0.46 0.56 
December 0.29 0.46 0.45 0.46 0.58 
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Figure 11. Streamflow Hydrograph for three target watersheds using measured and modeled streamflows for August, 
2005 

 
Figure 12. Monthly predicted and observed runoff for Dead Run watershed for calibration period (January 2007 - 
December 2009) 
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Table 9. Calibrated parameter set for five target watersheds (* denotes calibrated parameter in i-Tree Hydro Version 
6) 

Parameter Baisman 
Upper 
Gwynn Falls Herring Run Herbert Run Dead Run 

Leaf Transition Period (days) 28 28 28 28 28 

Leaf On Day 113 113 113 113 113 

Leaf Off Day 297 297 297 297 297 

Tree Bark Area Index 1.7 1.7 1.7 1.7 1.7 

Shrub Bark Area Index 0.5 0.5 0.5 0.5 0.5 

Leaf storage (mm) 0.2 0.2 0.2 0.2 0.2 

Pervious Depression Storage 
(mm) 1 1 1 1 1 

Impervious Depression 
Storage (mm) 2.5 2.5 2.5 2.5 2.5 

Scale Parameter of Power 
Function 2 2 2 2 2 

Scale Parameter of Soil 

Transmissivity* 1.2 1.2 0.029398 0.024023 0.020586 

Transmissivity at Saturation 

(m^2/h) * 84.659 0.038 0.002 0.005 0.255 

Unsaturated Zone Time Delay 
(h) 10 10 10 10 10 

Time Constant for Pervious 
Area flow A (h) 40 40 40 40 40 

Time Constant for Pervious 
Area flow B (h) 40 40 40 40 40 

Time Constant for DCIA flow A 
(h) 40 40 40 40 40 

Time Constant for DCIA flow B 
(h) 40 40 40 40 40 

Time Constant for Subsurface 
Flow (h) 120 120 120 120 120 

Soil Macropore Percentage* 0.0000010039 0.000001 0.0000010018 0.0000010058 0.00000099 

Watershed area where rainfall 
rate can exceed infiltration rate 
(%) 100 100 100 100 100 
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