Session A, 2017 Second Place: Effect of Both Presence of White Stripe and Size of Organism on Cryptic Color Change in American Toads

Benjamin VanderStouw
Clare Foley
Renee Perrotte
Scott Kostka

Follow this and additional works at: http://digitalcommons.esf.edu/clbs
Part of the Aquaculture and Fisheries Commons, Biodiversity Commons, Biology Commons, Ecology and Evolutionary Biology Commons, Entomology Commons, and the Forest Sciences Commons

Recommended Citation
VanderStouw, Benjamin; Foley, Clare; Perrotte, Renee; and Kostka, Scott, "Session A, 2017 Second Place: Effect of Both Presence of White Stripe and Size of Organism on Cryptic Color Change in American Toads" (2017). Cranberry Lake Biological Station. 23.
http://digitalcommons.esf.edu/clbs/23

This Presentation is brought to you for free and open access by the Environmental and Forest Biology at Digital Commons @ ESF. It has been accepted for inclusion in Cranberry Lake Biological Station by an authorized administrator of Digital Commons @ ESF. For more information, please contact digitalcommons@esf.edu, cikoons@esf.edu.
Effect of Both Presence of White Stripe and Size of Organism on Cryptic Color Change in American Toads

Benjamin VanderStouw, Clare Foley, Renee Perrotte, and Scott Kostka
Introduction

- Observed white-striped American Toad (*Anaxyrus americanus*) assemblages
- Trait only common in Adirondacks (Gibbs, 2017)
- Led to inquiry of toad survivability with distinct markings
- Cryptic coloration (Heinen, 1994)
- Noticed varying sizes of toads
First Hypothesis

$H_a, 1$: American Toads with a distinct white stripe will have a faster rate of color change (measured in change of MCV’s per minute) than American toads without white stripes.
Second Hypothesis

$H_a, 2$: Due to the difference in sizes of the toads, we also hypothesized that smaller toads would undergo a faster color change (change in MCV’s per minute) due to their smaller surface area.
Field Methods:

Found toads

Did not find toads
Methods

- Determination of size and presence of stripe
- Catalogued 31 toads (Partymiller, n.d.), our experimental and sampling units
Methods

- 2 hours in light terrarium, 1 hour in dark terrarium
- Conversion of MCV’s into Cartesian Plane Coordinates (Ruck & Brown, 2015).
- 2 sample T-test for stripe
- Regression analysis for size
Toads without Stripe

Toads with Stripe

The average rate of change of toads with a white stripe vs toads without a white stripe

Two sample T-test results:
N = 20
T value: 0.48
P value: 0.642
Regression analysis: The rate of color change vs toad length without outliers
Discussion

- Hypothesis 1; same predators, relative location, habitat, frequency, white stripe vulnerable elsewhere, neutral trait
- Hypothesis 2; length can help explain rate of color change
- Color change was a result of background, but not desiccation (Heinen, 1994)
- Predation risk aids in substrate choice for toads, they prefer dark substrate (Heinen, 1993)
Obstacles and Future Studies

- Toad color not homogenous
- Sex and size relationship
- Stressing toads
- Does immediate predation increase color rate of change in toads?
- Do the herbaceous plants in which toads are found aid in their coloration?
Conclusion

- H_a, 1: We failed to refute the null hypothesis
- H_a, 2: We refuted the null hypothesis
- Much more research can be conducted about white striped toads in the Adirondacks
References

Questions?

Acknowledgements: We would like to thank Edward Rolle for assisting with the collection of toads and Dr. Gibbs for bringing the white-striped morph to our attention.