Session D, 2017 First Place: Under the Sphagnum: An Observational Analysis of the Relationship Between Distance and Ectomycorrhizal Morphotype Diversity in Larix laricina Within Wetland Ecosystems

Max Hermanson
Silus Weckel
Alex Kozisky
Kyle Kozlowski

Follow this and additional works at: https://digitalcommons.esf.edu/clbs

Part of the Aquaculture and Fisheries Commons, Biodiversity Commons, Biology Commons, Ecology and Evolutionary Biology Commons, Entomology Commons, and the Forest Sciences Commons

Recommended Citation
Hermanson, Max; Weckel, Silus; Kozisky, Alex; and Kozlowski, Kyle, "Session D, 2017 First Place: Under the Sphagnum: An Observational Analysis of the Relationship Between Distance and Ectomycorrhizal Morphotype Diversity in Larix laricina Within Wetland Ecosystems" (2017). Cranberry Lake Biological Station. 27.
https://digitalcommons.esf.edu/clbs/27

This Presentation is brought to you for free and open access by the Environmental and Forest Biology at Digital Commons @ ESF. It has been accepted for inclusion in Cranberry Lake Biological Station by an authorized administrator of Digital Commons @ ESF. For more information, please contact digitalcommons@esf.edu, cjkoons@esf.edu.
“Under the Sphagnum: An Observational Analysis of the Relationship Between Distance and Ectomycorrhizal Morphotype Diversity in *Larix laricina* Within Wetland Ecosystems

By Max Hermanson, Silus Weckel, Alex Kozisky, and Kyle Kozlowski
Mycorrhizal Fungi

- Form symbiotic relationships with plants
 - Attach to host roots
 - Increase host’s water & nutrient uptake
 - Fungi gains access to carbs

- Ecto vs. Endo
Introduction

• What are ectomycorrhizal fungi?

• Associated with woody plants
 – Betulaceae, Fagaceae, Pinaceae
Inspiration

• Distance from woodland edge in old fields affects EMF colonization
• Roots of adjacent trees can act as sources for fungal colonization among different tree sp.
• EMF diversity is higher in uplands than wetlands
• Higher root density has been correlated with higher EMF diversity
Hypothesis

• H_0 - There will be no relationship between EMF morphotype diversity and distance from the edge of the wetland.

• H_a - There will be a negative relationship present on the morphotype diversity of EMF as the distance from the edge of the wetland increases.

• **Independent Variable**: distance from the edge of the wetland

• **Dependent variable**: morphotype diversity of EMF
Presence of Larch

Wetland Interior

Wetland Exterior

Upland
Importance of Study

• Examines relationship between distance and EMF diversity in wetlands
• First CLBS project to study EMFs
• Not much EMF research with *Larix laricina*
Methods

Experimental Design:

• Experimental unit: the three wetlands

• Sample Unit: trees within wetlands
 – Subsample unit: root tips

• The study was replicated in 3 wetlands, with 9 trees sampled from each wetland
Sampling

- Random Tree Selection
- Tree size: DBH less than 3cm
- 10 root tips per tree
- Roots taken from depth of 0-0.25m
Digging for Roots
Root Processing & Morphology

• Dissecting microscopes
• EMF’s were classified based on morphological differences
 – Shape
 – Color
 – *Staining*
• Morphotypes compared to photographs of known EMF associates of *Larix laricina*

^“White Deer”
Results

• Distance into wetland vs. morphotype diversity $p=0.031$, $F=7.22$, $R^2=50.77$
• Comparing 3 sections of each transect $p=0.012$, $F=10$, $DF=2$
• Tukey: Exterior – A, Intermediate – B, Interior – B
<table>
<thead>
<tr>
<th></th>
<th>Shannon-Weiner Diversity Average</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wetland Exterior</td>
</tr>
<tr>
<td>Fen</td>
<td>0.655</td>
</tr>
<tr>
<td>Forsaith's</td>
<td>0.650</td>
</tr>
<tr>
<td>Lost Pond</td>
<td>0.772</td>
</tr>
</tbody>
</table>
y = -0.0213x + 0.7018
$R^2 = 0.5077$
$p = 0.031$
Mean Diversity

- Wetland Exterior: A
- Wetland Intermediate: B
- Wetland Interior: B

F2 = 10
p = 0.012
Morphotype Abundance

<table>
<thead>
<tr>
<th>Morphotype</th>
<th>Abundance</th>
<th>Percent of colonization</th>
</tr>
</thead>
<tbody>
<tr>
<td>White Deer</td>
<td>97</td>
<td>52.4</td>
</tr>
<tr>
<td>Mold Deer</td>
<td>31</td>
<td>16.8</td>
</tr>
<tr>
<td>White Pyramid</td>
<td>5</td>
<td>2.7</td>
</tr>
<tr>
<td>Cinnamon Bulge</td>
<td>6</td>
<td>3.2</td>
</tr>
<tr>
<td>Black Fuzzy</td>
<td>32</td>
<td>17.3</td>
</tr>
<tr>
<td>Shroom</td>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td>Worm</td>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td>Grey Deer</td>
<td>2</td>
<td>1.1</td>
</tr>
<tr>
<td>Wrinkle Pickle</td>
<td>7</td>
<td>3.8</td>
</tr>
<tr>
<td>Cob Web</td>
<td>3</td>
<td>1.6</td>
</tr>
<tr>
<td>Total</td>
<td>185</td>
<td></td>
</tr>
</tbody>
</table>
Discussion

• Possible explanations for results
 – Larches on border between wetland and upland had root contact with upland trees
 – Moisture levels
 • Soil moisture levels were higher in the wetland interior
 • Plants farther from edge benefit less from mycorrhizal relationship
 – Tree density, nitrogen

• The use of morphotypes for EMF validation
Ways to Improve

• Use more similar wetlands
• Larger sample sizes
• Genetic Analysis
• N, P, K test
• Account for tree age
• Take surveys of surrounding vegetation
• Upland tree surveys along boundaries
Ectomycorrhizae

Hyphae do not penetrate root cells
Future Studies

• The effect of wetland size on diversity
• Correlation between moisture levels and diversity
• Compare pure stands of *Larix laricina*, *Picea mariana*, and mixed stands
Conclusion

• We rejected the null hypothesis (p=0.031)
• There was a relationship between EMF morphotype diversity and distance from the edge of the fen.
Questions?
Acknowledgements

Keith Bowman
Kim Schultz
Melissa Fierke
Tom Horton
Alexander Weir
Sarge
Connor Darcy
Aimee Hudon
Danny Newman
References

• Agerer, R. (n.d). Exploration types of ectomycorrhizae - A proposal to classify ectomycorrhizal mycelial systems according to their patterns of differentiation and putative ecological importance. Mycorrhiza, 11(2), 107-114.