Document Type


Publication Date



Harvesting is the single largest cost in the production of short rotation woody crops (SRWC) like shrub 8 willow and previous systems tested in North America have not been effective for the size of material grown. The 9 objective of this study was to evaluate the performance of a single-pass, cut and chip harvester in conjunction with 10 two locally-sourced chip collection systems on 54 ha of coppiced willow harvests in New York State. Harvesting 11 and collection equipment was tracked for 153 loads over 10 days of harvesting using GPS dataloggers. Effective 12 material capacities (Cm) increased linearly with standing biomass up to 40 to 45 Mgwet ha-1 because ground speed 13 was limited by ground conditions. This relationship changed dramatically with standing biomass in the 40 – 90 14 Mgwet ha-1 range, where Cm plateaued between 70 and 90 Mgwet hr-1 and was limited by crop conditions and 15 harvester capacity. The relationship between standing biomass and the harvester’s Cm will probably change under 16 different crop and ground conditions. The size of the harvester and the experience of the operator are other factors. 17 This nonlinear relationship will impact cost and optimization modeling SRWC systems. Improperly sized headland 18 and long haul distances impeded the performance of locally sourced collection systems resulting in a 33% decrease 19 in Cm from the field to the headlands, and 66% from the field to short-term storage as biomass moves through the 20 system.


This article has been published in BioEnergy Research. The final publication is available at

Minor differences may exist between the drafts associated with the galley proof corrections